Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer

Mehmet Özer, F. Balıkoğlu, T. K. Demircioğlu, Yunus Emre Nehri
{"title":"Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer","authors":"Mehmet Özer, F. Balıkoğlu, T. K. Demircioğlu, Yunus Emre Nehri","doi":"10.24012/dumf.1389301","DOIUrl":null,"url":null,"abstract":"Artificial neural network approach was used to predict the thicknesses of total (FeB+Fe2B), FeB and Fe2B borides layers of AISI 1020, AISI 1060, and AISI 4140 steels. Boronizing heat treatment was conducted in a solid medium comprising of EKabor®2 powders at 840–960 ˚C at 40 ˚C intervals for 2, 4, 6, and 8 hours. Optical microscope analysis of the borided layer revealed the saw-tooth (columnar) and planar morphology. The depth of the total (FeB+Fe2B), FeB and Fe2B boride layers was accurately predicted. For total boride layers generated by the artificial neural network model, the average error varied between 0.04 and 7.64 µm. Micro hardness values increased by 423% in AISI 1020, 336% in AISI 1060, and 411% in AISI 41040 after the boronizing process.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"133 9‐10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1389301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural network approach was used to predict the thicknesses of total (FeB+Fe2B), FeB and Fe2B borides layers of AISI 1020, AISI 1060, and AISI 4140 steels. Boronizing heat treatment was conducted in a solid medium comprising of EKabor®2 powders at 840–960 ˚C at 40 ˚C intervals for 2, 4, 6, and 8 hours. Optical microscope analysis of the borided layer revealed the saw-tooth (columnar) and planar morphology. The depth of the total (FeB+Fe2B), FeB and Fe2B boride layers was accurately predicted. For total boride layers generated by the artificial neural network model, the average error varied between 0.04 and 7.64 µm. Micro hardness values increased by 423% in AISI 1020, 336% in AISI 1060, and 411% in AISI 41040 after the boronizing process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硼化层对 AISI 1020、AISI 1060 和 AISI 4140 钢硬度的影响以及人工神经网络在硼化层预测中的应用
采用人工神经网络方法预测 AISI 1020、AISI 1060 和 AISI 4140 钢的总硼化物层(FeB+Fe2B)、FeB 和 Fe2B 的厚度。硼化热处理在由 EKabor®2 粉末组成的固体介质中进行,温度为 840-960 ˚C,间隔 40 ˚C,时间为 2、4、6 和 8 小时。硼化层的光学显微镜分析显示出锯齿状(柱状)和平面状形态。总(FeB+Fe2B)、FeB 和 Fe2B 硼化物层的深度可准确预测。人工神经网络模型生成的总硼化物层的平均误差在 0.04 至 7.64 µm 之间。硼化处理后,AISI 1020 的显微硬度值提高了 423%,AISI 1060 提高了 336%,AISI 41040 提高了 411%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1