Modulation recognition using hierarchical deep neural networks

Krishna Karra, Scott Kuzdeba, Josh Petersen
{"title":"Modulation recognition using hierarchical deep neural networks","authors":"Krishna Karra, Scott Kuzdeba, Josh Petersen","doi":"10.1109/DySPAN.2017.7920746","DOIUrl":null,"url":null,"abstract":"We outline the core components of a modulation recognition system that uses hierarchical deep neural networks to identify data type, modulation class and modulation order. Our system utilizes a flexible front-end detector that performs energy detection, channelization and multi-band reconstruction on wideband data to provide raw narrowband signal snapshots. We automatically extract features from these snapshots using convolutional neural network layers, which produce decision class estimates. Initial experimentation on a small synthetic radio frequency dataset indicates the viability of deep neural networks applied to the communications domain. We plan to demonstrate this system at the Battle of the Mod Recs Workshop at IEEE DySpan 2017.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

We outline the core components of a modulation recognition system that uses hierarchical deep neural networks to identify data type, modulation class and modulation order. Our system utilizes a flexible front-end detector that performs energy detection, channelization and multi-band reconstruction on wideband data to provide raw narrowband signal snapshots. We automatically extract features from these snapshots using convolutional neural network layers, which produce decision class estimates. Initial experimentation on a small synthetic radio frequency dataset indicates the viability of deep neural networks applied to the communications domain. We plan to demonstrate this system at the Battle of the Mod Recs Workshop at IEEE DySpan 2017.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次深度神经网络的调制识别
我们概述了调制识别系统的核心组件,该系统使用分层深度神经网络来识别数据类型,调制类和调制顺序。我们的系统利用一个灵活的前端探测器,对宽带数据进行能量检测、信道化和多波段重建,以提供原始窄带信号快照。我们使用卷积神经网络层从这些快照中自动提取特征,从而产生决策类估计。在小型合成射频数据集上的初步实验表明,深度神经网络应用于通信领域的可行性。我们计划在2017年IEEE DySpan的Mod Recs研讨会上演示该系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS) Design and implementation of the Secondary User-Enhanced Spectrum Sharing (SUESS) radio Enhanced 5G spectrum sharing using a new adaptive NC-OFDM waveform with reconfigurable antennas USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification Joint transmission and cooperative spectrum sensing scheduling optimization in multi-channel dynamic spectrum access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1