Detection of AIS Spoofing in Fishery Scenarios

Max Kruger
{"title":"Detection of AIS Spoofing in Fishery Scenarios","authors":"Max Kruger","doi":"10.23919/fusion43075.2019.9011328","DOIUrl":null,"url":null,"abstract":"For the purpose of maritime safety, information, and surveillance, almost all sea-going vessels have to participate in the Automatic Identification System (AIS). This system serves as a cooperative VHF-radio exchange of navigational and ships' information. Since AIS broadcasts self-declared information, it is open to fraudulent misuse by users. Based on different approaches to classification of maritime vessels, i.e., Random Forest, Voting-2-of-3, Decision Tree, Fuzzy Rule, and $k$ Nearest Neighbor, this contribution addresses the question, up to which accuracy it is possible, to detect fishery vessels with spoofed AIS-type based only on ship's positional, motion, and dimensions' AIS-data. For this purpose, in real-life AIS datasets from early summer 2017 the classification results of AIS fishery type are evaluated and compared.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the purpose of maritime safety, information, and surveillance, almost all sea-going vessels have to participate in the Automatic Identification System (AIS). This system serves as a cooperative VHF-radio exchange of navigational and ships' information. Since AIS broadcasts self-declared information, it is open to fraudulent misuse by users. Based on different approaches to classification of maritime vessels, i.e., Random Forest, Voting-2-of-3, Decision Tree, Fuzzy Rule, and $k$ Nearest Neighbor, this contribution addresses the question, up to which accuracy it is possible, to detect fishery vessels with spoofed AIS-type based only on ship's positional, motion, and dimensions' AIS-data. For this purpose, in real-life AIS datasets from early summer 2017 the classification results of AIS fishery type are evaluated and compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渔业场景下AIS欺骗检测
为了海上安全、信息和监视的目的,几乎所有的海船都必须加入自动识别系统(AIS)。该系统可作为导航和船舶信息的超高频无线电协作交换。由于AIS广播自己声明的信息,它很容易被用户欺诈滥用。基于不同的船舶分类方法,即随机森林,投票-2- 3,决策树,模糊规则和$k$最近邻,该贡献解决了仅基于船舶的位置,运动和尺寸的ais数据来检测具有欺骗ais类型的渔船的问题。为此,在2017年初夏的真实AIS数据集中,对AIS渔业类型的分类结果进行了评估和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuum Detection and Predictive-Corrective Classification of Crack Networks Adaptive BM3D Algorithm for Image Denoising Using Coefficient of Variation A Latent Variable Model State Estimation System for Image Sequences Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1