{"title":"Corrosion of a Laser Mirror","authors":"","doi":"10.31399/asm.fach.modes.c0006440","DOIUrl":null,"url":null,"abstract":"\n A failed laser mirror and another complete mirror of the same construction were analyzed. The laser mirror consisted of three layers of material brazed together to form channels through which the cooling water flows. Samples were analyzed with light optical and scanning electron microscopy. The corrosion product contained molybdenum and copper with a trace of gold. The base material was analyzed as molybdenum with negligible alloying additions. The primary mode of corrosion attack on the base material appeared to be intergranular, although uniform corrosion was evident also. It was concluded that corrosion attack sufficiently weakened the base material and the brazed joints, allowing catastrophic failure of the mirror due to the pressure of the cooling water. It was recommended that the mirrors be cleaned of all corrosion products present as a result of past service conditions and proof tested. It was recommended that the water system consisting of deionized water and formaldehyde be replaced with water having a low oxygen content and a cathodic inhibitor (oxygen scavenger).","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0006440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A failed laser mirror and another complete mirror of the same construction were analyzed. The laser mirror consisted of three layers of material brazed together to form channels through which the cooling water flows. Samples were analyzed with light optical and scanning electron microscopy. The corrosion product contained molybdenum and copper with a trace of gold. The base material was analyzed as molybdenum with negligible alloying additions. The primary mode of corrosion attack on the base material appeared to be intergranular, although uniform corrosion was evident also. It was concluded that corrosion attack sufficiently weakened the base material and the brazed joints, allowing catastrophic failure of the mirror due to the pressure of the cooling water. It was recommended that the mirrors be cleaned of all corrosion products present as a result of past service conditions and proof tested. It was recommended that the water system consisting of deionized water and formaldehyde be replaced with water having a low oxygen content and a cathodic inhibitor (oxygen scavenger).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光反射镜的腐蚀
对一个失效的激光反射镜和另一个相同结构的完整反射镜进行了分析。激光反射镜由三层材料钎焊而成,形成冷却水流经的通道。用光学显微镜和扫描电镜对样品进行分析。腐蚀产物中含有钼、铜和微量的金。基材分析为钼,合金添加量可忽略不计。基材的主要腐蚀方式是晶间腐蚀,但均匀腐蚀也很明显。最后得出结论,腐蚀侵蚀充分削弱了基材和钎焊接头,导致由于冷却水压力导致镜面灾难性失效。建议对镜子进行清洗,清除由于过去的使用条件和证明测试而产生的所有腐蚀产物。建议将去离子水和甲醛组成的水系统替换为低氧含量的水和阴极抑制剂(氧清除剂)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fatigue Failures, With Special Reference to Fracture Characteristics Dezincification of a Copper Pipe Welded Joint Electron Fractography Pinpoints Cause of Fatigue Fracture Failure of a Hard-Faced Stainless Steel Pump Sleeve Because of Abrasive Wear by River-Water Silt Fatigue Fracture and Weld
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1