Recent Advances In Exponential Random Graph Modelling

A. Caimo, Isabella Gollini
{"title":"Recent Advances In Exponential Random Graph Modelling","authors":"A. Caimo, Isabella Gollini","doi":"10.1353/mpr.2023.0000","DOIUrl":null,"url":null,"abstract":"Abstract:Exponential random graph models (ERGMs) are one of the most popular statistical methods for analysing relational network structures. ERGMs represent generative statistical network processes that allow researchers to specify sufficient statistics in the form of counts of network configurations associated to potential dependencies between and across particular sets of nodes. In this paper, we review some of the most interesting recent advances for the ERGM framework. In particular, we focus on the modelling extensions for valued, multi-layer and multi-level networks.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2023.0000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:Exponential random graph models (ERGMs) are one of the most popular statistical methods for analysing relational network structures. ERGMs represent generative statistical network processes that allow researchers to specify sufficient statistics in the form of counts of network configurations associated to potential dependencies between and across particular sets of nodes. In this paper, we review some of the most interesting recent advances for the ERGM framework. In particular, we focus on the modelling extensions for valued, multi-layer and multi-level networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指数随机图建模的最新进展
摘要指数随机图模型是分析关系网络结构最常用的统计方法之一。ergm代表生成的统计网络过程,允许研究人员以与特定节点集之间和之间的潜在依赖关系相关的网络配置计数的形式指定足够的统计数据。在本文中,我们回顾了ERGM框架的一些最有趣的最新进展。特别地,我们专注于有值、多层和多层次网络的建模扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances In Exponential Random Graph Modelling Flux Limitation Mechanisms Arising in Multiscale Modelling of Cancer Invasion The Bergmann-Shilov boundary of a Bounded Symmetric Domain A Characterisation of the Quaternions Using Commutators Parallelogram Frameworks and Flexible Quasicrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1