Prediction optimization method for multi-fault detection enhancement: application to GNSS positioning

Kaddour Mahmoud, Makkawi Khoder, Ait-Tmazirte Nourdine, E. N. Maan, M. Nazih
{"title":"Prediction optimization method for multi-fault detection enhancement: application to GNSS positioning","authors":"Kaddour Mahmoud, Makkawi Khoder, Ait-Tmazirte Nourdine, E. N. Maan, M. Nazih","doi":"10.1109/ICVES.2018.8519487","DOIUrl":null,"url":null,"abstract":"this paper presents an integrity monitoring method in order to provide a precise Global Navigation Satellite System (GNSS) positioning. The originality of the proposed method consists on robustly select the non-faulty observations subset from GNSS observation by detecting and excluding erroneous measurements. A part of classical Fault Detection and Exclusion (FDE) literature is based on residual using prediction step of a recursive Bayesian filter like Kalman filter. The confidence granted to the prediction in such methods is critical in the phase of error detection. In GNSS standalone positioning, classical used prediction models are very approximate by inducing bad decisions, which increases the false alarm probability (PFA) and missed detection probability (PMD), leading a diminution in the integrity of GNSS positioning.In order to improve prediction step accuracy, in this paper, we propose a procedure of prediction optimization using a parametric model in the framework of a RAIM (Receiver Autonomous Integrity Monitoring) residual method used for erroneous measurements detection. Real GNSS data in experimental studies are used to test the proposed method. The results show that prediction optimization method improves RAIM residual sensitivity. In addition, the developed isolation step reduces considerably computational time.","PeriodicalId":203807,"journal":{"name":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2018.8519487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

this paper presents an integrity monitoring method in order to provide a precise Global Navigation Satellite System (GNSS) positioning. The originality of the proposed method consists on robustly select the non-faulty observations subset from GNSS observation by detecting and excluding erroneous measurements. A part of classical Fault Detection and Exclusion (FDE) literature is based on residual using prediction step of a recursive Bayesian filter like Kalman filter. The confidence granted to the prediction in such methods is critical in the phase of error detection. In GNSS standalone positioning, classical used prediction models are very approximate by inducing bad decisions, which increases the false alarm probability (PFA) and missed detection probability (PMD), leading a diminution in the integrity of GNSS positioning.In order to improve prediction step accuracy, in this paper, we propose a procedure of prediction optimization using a parametric model in the framework of a RAIM (Receiver Autonomous Integrity Monitoring) residual method used for erroneous measurements detection. Real GNSS data in experimental studies are used to test the proposed method. The results show that prediction optimization method improves RAIM residual sensitivity. In addition, the developed isolation step reduces considerably computational time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多故障检测增强预测优化方法:在GNSS定位中的应用
为了提供精确的全球卫星导航系统(GNSS)定位,本文提出了一种完整性监测方法。该方法的新颖之处在于通过检测和排除错误测量值,从GNSS观测值中稳健地选择非错误观测值子集。经典的故障检测与排除(FDE)文献中有一部分是基于残差的,利用递归贝叶斯滤波的预测步长,如卡尔曼滤波。在误差检测阶段,这些方法给予预测的置信度是至关重要的。在GNSS独立定位中,经典的预测模型由于引入错误决策而过于近似,增加了误报概率(PFA)和漏检概率(PMD),降低了GNSS定位的完整性。为了提高预测步长精度,本文提出了一种在RAIM(接收机自主完整性监测)残差法检测误差的框架下,利用参数模型进行预测优化的方法。利用实验研究中的真实GNSS数据对所提出的方法进行了验证。结果表明,预测优化方法提高了RAIM残差灵敏度。此外,所开发的隔离步骤大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey: Engineering Challenges to Implement VANET Security Revisiting Gaussian Mixture Models for Driver Identification On the Impact of Platooning Maneuvers on Traffic Improvement of Pedestrian Positioning Precision by Using Spatial Correlation of Multipath Error Dense Spatial Translation Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1