On the Step-Size optimization of the LMS Algorithm

Alexandru-George Rusu, S. Ciochină, C. Paleologu
{"title":"On the Step-Size optimization of the LMS Algorithm","authors":"Alexandru-George Rusu, S. Ciochină, C. Paleologu","doi":"10.1109/TSP.2019.8768842","DOIUrl":null,"url":null,"abstract":"The least-mean-square (LMS) and the normalized least-mean-square (NLMS) algorithms require a trade-off between fast convergence and low misadjustment, obtained by choosing the control parameters. In general, time variable parameters are proposed according to different rules. Many studies on the optimization of the NLMS algorithm imply time variable control parameters according some specific criteria. In this paper, we develop an optimized LMS algorithm, in the context of a state variable model. The proposed algorithm follows an optimization problem and introduces a variable step-size in order to minimize the system misalignment. The simulations confirm the theoretical results and show the good features of the algorithm.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The least-mean-square (LMS) and the normalized least-mean-square (NLMS) algorithms require a trade-off between fast convergence and low misadjustment, obtained by choosing the control parameters. In general, time variable parameters are proposed according to different rules. Many studies on the optimization of the NLMS algorithm imply time variable control parameters according some specific criteria. In this paper, we develop an optimized LMS algorithm, in the context of a state variable model. The proposed algorithm follows an optimization problem and introduces a variable step-size in order to minimize the system misalignment. The simulations confirm the theoretical results and show the good features of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LMS算法的步长优化
最小均方(LMS)和归一化最小均方(NLMS)算法需要在快速收敛和低失调之间进行权衡,这可以通过选择控制参数来实现。一般情况下,根据不同的规则提出时变参数。许多关于NLMS算法优化的研究都隐含了一些特定准则的时变控制参数。在本文中,我们开发了一种优化的LMS算法,在状态变量模型的背景下。该算法遵循一个优化问题,并引入可变步长以最小化系统偏差。仿真结果验证了理论结果,表明了该算法的良好特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of Beat Tracking in String Quartet Music Analysis Based on the Teager-Kaiser Energy Operator Smart Speaker: Suspicious Event Detection with Reverse Mode Speakers Supervised Learning in Multi-Agent Environments Using Inverse Point of View Evaluation of Layer 3 Multipath Solutions using Container Technologies Detecting Cluster Synchronization in Chaotic Dynamic Networks via Information Theoretic Measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1