Pareto based optimal sizing and energy storage mix in ship power systems

A. Elsayed, N. Elsayad, O. Mohammed
{"title":"Pareto based optimal sizing and energy storage mix in ship power systems","authors":"A. Elsayed, N. Elsayad, O. Mohammed","doi":"10.1109/IAS.2016.7731851","DOIUrl":null,"url":null,"abstract":"The weight of onboard equipment represents a major concern in transportation systems. In ship power systems, in addition to weigh concerns, some loads are frequently demanding high power for short time durations. Thus, adding energy storage is mandatory to smooth the effect of these loads. This paper introduces a methodology based on Pareto concept to optimally size and select the mix of different energy storage technologies. The problem is formulated as a multi-objective Optimization (MOO), where two objectives are considered. The first is to minimize the voltage fluctuations on the buses and the second is to minimize the total weight of the Energy Storage System (ESS). Three candidate energy storage technologies were considered; lead acid, lithium ion batteries and Super-capacitors. The Pareto Front (PF) was obtained using Non-dominated Sorting Genetic Algorithms II (NSGA-II). The results show the feasibility and computational efficiency of the proposed methodology.","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The weight of onboard equipment represents a major concern in transportation systems. In ship power systems, in addition to weigh concerns, some loads are frequently demanding high power for short time durations. Thus, adding energy storage is mandatory to smooth the effect of these loads. This paper introduces a methodology based on Pareto concept to optimally size and select the mix of different energy storage technologies. The problem is formulated as a multi-objective Optimization (MOO), where two objectives are considered. The first is to minimize the voltage fluctuations on the buses and the second is to minimize the total weight of the Energy Storage System (ESS). Three candidate energy storage technologies were considered; lead acid, lithium ion batteries and Super-capacitors. The Pareto Front (PF) was obtained using Non-dominated Sorting Genetic Algorithms II (NSGA-II). The results show the feasibility and computational efficiency of the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Pareto的船舶动力系统最优规模和储能组合
机载设备的重量是运输系统的一个主要问题。在船舶动力系统中,除了重量问题外,一些负载经常需要短时间内的高功率。因此,增加能量存储是必须的,以平滑这些负载的影响。本文介绍了一种基于帕累托概念的方法来优化不同储能技术的规模和选择组合。该问题被表述为一个多目标优化(MOO),其中考虑了两个目标。首先是尽量减少母线上的电压波动,其次是尽量减少储能系统的总重量。考虑了三种候选储能技术;铅酸、锂离子电池和超级电容器。采用非支配排序遗传算法II (NSGA-II)获得Pareto Front (PF)。结果表明了该方法的可行性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study on D converter based on control schemes of maximum extracted power Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer Multi-objective methodology to find the optimal forward current to supply light emitting diode (LED) lightings Power flow calculation considering power exchange control for multi-area interconnection power networks A multi-layer optimal chiller operation management framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1