Predicting gas emissions in a cement kiln plant using hard and soft modeling strategies

D. Gabriel, Tiago Matias, J. C. Pereira, R. Araújo
{"title":"Predicting gas emissions in a cement kiln plant using hard and soft modeling strategies","authors":"D. Gabriel, Tiago Matias, J. C. Pereira, R. Araújo","doi":"10.1109/ETFA.2013.6648036","DOIUrl":null,"url":null,"abstract":"In this work, two alternative methodologies for modeling and predicting gas emissions of NO, NO2 and SO2 are presented. The first method involves hard modeling strategies with Parsimonious Multivariate Least Squares (PMLS) assuming simple polynomial functions as base model. The second is a soft modeling approach using Extreme Learning Machine (ELM). In this work we found that both methods have similar capabilities for data description, providing an in depth analysis of the system under study. Results also reveal further insights in predicting gas emissions and enlighten on which of the factors can be useful for prediction, and consequently for system characterization and emission abatement.","PeriodicalId":106678,"journal":{"name":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2013.6648036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, two alternative methodologies for modeling and predicting gas emissions of NO, NO2 and SO2 are presented. The first method involves hard modeling strategies with Parsimonious Multivariate Least Squares (PMLS) assuming simple polynomial functions as base model. The second is a soft modeling approach using Extreme Learning Machine (ELM). In this work we found that both methods have similar capabilities for data description, providing an in depth analysis of the system under study. Results also reveal further insights in predicting gas emissions and enlighten on which of the factors can be useful for prediction, and consequently for system characterization and emission abatement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用软硬模型策略预测水泥窑厂气体排放
在这项工作中,提出了模拟和预测NO, NO2和SO2气体排放的两种替代方法。第一种方法涉及以简单多项式函数为基础模型的简约多元最小二乘(PMLS)硬建模策略。第二种是使用极限学习机(ELM)的软建模方法。在这项工作中,我们发现这两种方法具有相似的数据描述能力,为所研究的系统提供了深入的分析。结果还揭示了预测气体排放的进一步见解,并启发了哪些因素可以用于预测,从而用于系统表征和排放减排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPRS: Production skills and their relation to product, process, and resource A component-based software architecture for control and simulation of robotic manipulators Fault diagnosis of a production and distribution system with Petri nets Interoperability analysis: General concepts for an axiomatic approach Semantic alarm correlation based on ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1