A Support Vector Classification Model with Partial Empirical Risks Given

Linkai Luo, Ling-Jun Ye, Qifeng Zhou, Hong Peng
{"title":"A Support Vector Classification Model with Partial Empirical Risks Given","authors":"Linkai Luo, Ling-Jun Ye, Qifeng Zhou, Hong Peng","doi":"10.1109/ICMLA.2015.45","DOIUrl":null,"url":null,"abstract":"A novel model of support vector classification with partial empirical risks given (P-SVC) is proposed. A sequential minimal optimization for P-SVC is also provided. P-SVC is an extension of the classical support vector classification (C-SVC) and can be used in the case where partial empirical risks are requested. The experiments on some artificial and benchmark datasets show P-SVC obtains a better classification accuracy and a more stable classification result than C-SVC does when partial empirical risks are known.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel model of support vector classification with partial empirical risks given (P-SVC) is proposed. A sequential minimal optimization for P-SVC is also provided. P-SVC is an extension of the classical support vector classification (C-SVC) and can be used in the case where partial empirical risks are requested. The experiments on some artificial and benchmark datasets show P-SVC obtains a better classification accuracy and a more stable classification result than C-SVC does when partial empirical risks are known.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
给出了一种具有部分经验风险的支持向量分类模型
提出了一种具有部分经验风险的支持向量分类模型(P-SVC)。给出了P-SVC的顺序最小优化方法。P-SVC是经典支持向量分类(C-SVC)的扩展,可用于要求部分经验风险的情况。在一些人工数据集和基准数据集上的实验表明,当部分经验风险已知时,P-SVC比C-SVC获得了更好的分类精度和更稳定的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1