{"title":"OpenMP and StarPU Abreast: the Impact of Runtime in Task-Based Block QR Factorization Performance","authors":"M. Miletto, L. Schnorr","doi":"10.5753/wscad.2019.8654","DOIUrl":null,"url":null,"abstract":"Directed Acyclic Graph (DAG) is a high-level abstraction to describe the activities of parallel applications. A DAG contains tasks (nodes) and dependencies (edges) in the task-based programming paradigm. Application performance depends on the choices of the runtime system. Our work intends to evaluate and compare the performance of three different runtime systems, GCC/libgomp, LLVM/libomp, and StarPU for a task-based dense block QR factorization. The obtained results show that while GCC/libgomp achieves up to 5.4% better performance in the best case, it has scalability problems for finegrain problems with large DAGs. LLVM/libomp and StarPU are more scalable, and StarPU is much faster in task creation and submission than the other runtimes.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Directed Acyclic Graph (DAG) is a high-level abstraction to describe the activities of parallel applications. A DAG contains tasks (nodes) and dependencies (edges) in the task-based programming paradigm. Application performance depends on the choices of the runtime system. Our work intends to evaluate and compare the performance of three different runtime systems, GCC/libgomp, LLVM/libomp, and StarPU for a task-based dense block QR factorization. The obtained results show that while GCC/libgomp achieves up to 5.4% better performance in the best case, it has scalability problems for finegrain problems with large DAGs. LLVM/libomp and StarPU are more scalable, and StarPU is much faster in task creation and submission than the other runtimes.