Invariant pattern recognition using SVDD-based associative memories

I. Ciocoiu
{"title":"Invariant pattern recognition using SVDD-based associative memories","authors":"I. Ciocoiu","doi":"10.1109/ISSCS.2013.6651250","DOIUrl":null,"url":null,"abstract":"Pattern recognition performances of a special gradient-type dynamical system are investigated. The system exhibits stable equilibrium points whose positions are defined by the minima of a data-dependent Lyapunov function constructed using the Support Vector Data Description (SVDD) algorithm. Invariance to standard geometric transformations is inferred by combining SVDD with the tangent distance (TD), which has superior recognition performances when compared to the Euclidean distance. Experimental results using the USPS handwritten characters database and the Olivetti face images database confirm the superiority of the proposed approach over existing solutions.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pattern recognition performances of a special gradient-type dynamical system are investigated. The system exhibits stable equilibrium points whose positions are defined by the minima of a data-dependent Lyapunov function constructed using the Support Vector Data Description (SVDD) algorithm. Invariance to standard geometric transformations is inferred by combining SVDD with the tangent distance (TD), which has superior recognition performances when compared to the Euclidean distance. Experimental results using the USPS handwritten characters database and the Olivetti face images database confirm the superiority of the proposed approach over existing solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于svdd的联想记忆的不变模式识别
研究了一类特殊梯度型动力系统的模式识别性能。系统表现出稳定的平衡点,其位置由使用支持向量数据描述(SVDD)算法构造的数据相关Lyapunov函数的最小值定义。将SVDD与切线距离(TD)相结合,推导出对标准几何变换的不变性,与欧氏距离相比,该方法具有更好的识别性能。使用USPS手写体字符数据库和Olivetti人脸图像数据库的实验结果证实了该方法相对于现有解决方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1