Dynamic time warping for speech recognition with training part to reduce the computation

Sun Xihao, Y. Miyanaga
{"title":"Dynamic time warping for speech recognition with training part to reduce the computation","authors":"Sun Xihao, Y. Miyanaga","doi":"10.2299/JSP.18.89","DOIUrl":null,"url":null,"abstract":"Dynamic time warping (DTW) is a popular automatic speech recognition (ASR) method based on template matching[1] [2]. DTW algorithm compares the parameters of an unknown word with the parameters of one reference template. But the recognition rate is limited. To increase the number of reference templates for the same word will improve the recognition rate, but it will lead to spend a lot of computing time and memory resource. In this paper we proposed a method to reduce the number of reference templates, thus reduces the computing time and memory resource and also keep the high recognition rate.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2299/JSP.18.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Dynamic time warping (DTW) is a popular automatic speech recognition (ASR) method based on template matching[1] [2]. DTW algorithm compares the parameters of an unknown word with the parameters of one reference template. But the recognition rate is limited. To increase the number of reference templates for the same word will improve the recognition rate, but it will lead to spend a lot of computing time and memory resource. In this paper we proposed a method to reduce the number of reference templates, thus reduces the computing time and memory resource and also keep the high recognition rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带训练部分的语音识别动态时间规整,以减少计算量
动态时间规整(Dynamic time warping, DTW)是一种流行的基于模板匹配的自动语音识别(ASR)方法[1][2]。DTW算法将一个未知词的参数与一个参考模板的参数进行比较。但是识别率是有限的。增加对同一词的参考模板的数量可以提高识别率,但会消耗大量的计算时间和内存资源。本文提出了一种减少参考模板数量的方法,从而减少了计算时间和内存资源,同时保持了较高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1