Optimum CNN-Based Plant Mutant Classification

Y. Goh, C. Ng, Y. Lee, C. Teoh, Y. Goh
{"title":"Optimum CNN-Based Plant Mutant Classification","authors":"Y. Goh, C. Ng, Y. Lee, C. Teoh, Y. Goh","doi":"10.1109/TENCON.2018.8650314","DOIUrl":null,"url":null,"abstract":"The study of the observable characteristics of mutants of the same genotype plant interacting with various environmental conditions is important to understand how well the performance of a particular trait in different growth environment. By automating the plant mutant classification process, botanist and agriculture scientist can perform large scale experiments to cultivate plants with useful traits to combat extreme environment conditions. This research aims to construct an optimum convolutional neural network (CNN) for image-based plant mutant classification task. Optimum parameters for 1) number of convolutional layers, 2) number of neurons in fully connected (FC) layer and 3) Number of FC layers are found in this paper. The possibility to improve success classification rate was explored by applying image pre-processing methods. Experimental results show that under optimum condition, CNN classification system without pre-processing algorithm shows the best success recognition rate of 97.90%.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study of the observable characteristics of mutants of the same genotype plant interacting with various environmental conditions is important to understand how well the performance of a particular trait in different growth environment. By automating the plant mutant classification process, botanist and agriculture scientist can perform large scale experiments to cultivate plants with useful traits to combat extreme environment conditions. This research aims to construct an optimum convolutional neural network (CNN) for image-based plant mutant classification task. Optimum parameters for 1) number of convolutional layers, 2) number of neurons in fully connected (FC) layer and 3) Number of FC layers are found in this paper. The possibility to improve success classification rate was explored by applying image pre-processing methods. Experimental results show that under optimum condition, CNN classification system without pre-processing algorithm shows the best success recognition rate of 97.90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn的植物突变体分类优化
研究同一基因型植物突变体在不同环境条件下的可观察特性,对于了解某一性状在不同生长环境下的表现有重要意义。通过自动化植物突变体分类过程,植物学家和农业科学家可以进行大规模的实验来培育具有有用性状的植物,以对抗极端环境条件。本研究旨在为基于图像的植物突变体分类任务构建最优卷积神经网络(CNN)。本文找到了1)卷积层数、2)全连接层神经元数和3)全连接层数的最优参数。探讨了应用图像预处理方法提高分类成功率的可能性。实验结果表明,在最优条件下,未经预处理算法的CNN分类系统的最佳识别率为97.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1