{"title":"Robotic rotorcraft and perch-and-stare: sensing landing zones and handling obscurants","authors":"T. Danko, A. Kellas, P. Oh","doi":"10.1109/ICAR.2005.1507427","DOIUrl":null,"url":null,"abstract":"Perch and stare is a maneuver where a vehicle flies to an overhead vantage point to provide a user with improved tactical information. This may include landing on rooftops, flying from rooftop to rooftop, or to windowsills all while carrying cameras or other intelligence gathering sensors. Miniature rotorcraft are ideal surveillance platforms, especially for perch and stare maneuvers because of their unique ability to take off and land vertically. Minimal vehicle size and weight also greatly enhance portability. Real world environmental influences such as fog, smoke, wind and cluttered or moving landing areas greatly complicate perch and stare maneuvers. This paper describes the application of optic flow and ultrasonic range finding sensors to increase miniature robotic rotorcraft autonomy for perch and stare maneuvers, especially in degraded environments","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Perch and stare is a maneuver where a vehicle flies to an overhead vantage point to provide a user with improved tactical information. This may include landing on rooftops, flying from rooftop to rooftop, or to windowsills all while carrying cameras or other intelligence gathering sensors. Miniature rotorcraft are ideal surveillance platforms, especially for perch and stare maneuvers because of their unique ability to take off and land vertically. Minimal vehicle size and weight also greatly enhance portability. Real world environmental influences such as fog, smoke, wind and cluttered or moving landing areas greatly complicate perch and stare maneuvers. This paper describes the application of optic flow and ultrasonic range finding sensors to increase miniature robotic rotorcraft autonomy for perch and stare maneuvers, especially in degraded environments