{"title":"Optimization of Chebyshev Low-pass Topology based Broadband Power Amplifier Using PSO Algorithm","authors":"Yan Qu, Jialin Cai","doi":"10.1109/IWS55252.2022.9978150","DOIUrl":null,"url":null,"abstract":"In this paper, a broadband power amplifier (PA) is designed using particle swarm optimization (PSO) algorithm. The Chebyshev low-pass topology is employed to establish initial matching network of the PA. The matching impedance of the network is optimized by the PSO algorithm. The simulation results show that, with the proposed optimization method, excellent impedance matching network can be obtained. The power added efficiency (PAE) can be improved more than 10% averagely, which greater than 70%, and output power improved 1 dBm averagely, which arrived bigger than 41 dBm in the frequency band between 2GHz to 3GHz, which validate the feasibility and effectiveness of the proposed design method.","PeriodicalId":126964,"journal":{"name":"2022 IEEE MTT-S International Wireless Symposium (IWS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS55252.2022.9978150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a broadband power amplifier (PA) is designed using particle swarm optimization (PSO) algorithm. The Chebyshev low-pass topology is employed to establish initial matching network of the PA. The matching impedance of the network is optimized by the PSO algorithm. The simulation results show that, with the proposed optimization method, excellent impedance matching network can be obtained. The power added efficiency (PAE) can be improved more than 10% averagely, which greater than 70%, and output power improved 1 dBm averagely, which arrived bigger than 41 dBm in the frequency band between 2GHz to 3GHz, which validate the feasibility and effectiveness of the proposed design method.