Beginner's guide to microbiome analysis: Bioinformatics guidelines and practical concepts for amplicon-based microbiome analysis.

Pichahpuk Uthaipaisanwong, Pantakan Puengrang, C. Rangsiwutisak, Photchanathorn Prombun, Athisri Sitthipunya, Natchaphon Rajudom, K. Kusonmano
{"title":"Beginner's guide to microbiome analysis: Bioinformatics guidelines and practical concepts for amplicon-based microbiome analysis.","authors":"Pichahpuk Uthaipaisanwong, Pantakan Puengrang, C. Rangsiwutisak, Photchanathorn Prombun, Athisri Sitthipunya, Natchaphon Rajudom, K. Kusonmano","doi":"10.1145/3429210.3429211","DOIUrl":null,"url":null,"abstract":"The advent of next-generation sequencing (NGS) allows to study living organisms by reading genetic materials in a high-throughput manner. The technology has opened up a field of microbial research in several areas such as medicine, agriculture, energy, and environment, to study a whole microbial community in an environment of interest without culturing. Bioinformatics analysis is a need in order to characterize and analyze microbiota in the studied samples. In this tutorial, we will give an overview of microbiome analysis based on high-throughput 16S rRNA genes sequencing, a commonly-used target sequence to classify bacteria and archaea. With biological and technology backgrounds, microbiome data from short-read sequencing platform will be elucidated followed by all important computational steps for microbiome analysis. The steps include data preprocessing, amplicon sequence variant analysis, taxonomy assignment, data normalization, and diversity analyses. Practical concepts and codes for the microbiome analysis will be demonstrated step by step providing a basic guideline for beginner.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of next-generation sequencing (NGS) allows to study living organisms by reading genetic materials in a high-throughput manner. The technology has opened up a field of microbial research in several areas such as medicine, agriculture, energy, and environment, to study a whole microbial community in an environment of interest without culturing. Bioinformatics analysis is a need in order to characterize and analyze microbiota in the studied samples. In this tutorial, we will give an overview of microbiome analysis based on high-throughput 16S rRNA genes sequencing, a commonly-used target sequence to classify bacteria and archaea. With biological and technology backgrounds, microbiome data from short-read sequencing platform will be elucidated followed by all important computational steps for microbiome analysis. The steps include data preprocessing, amplicon sequence variant analysis, taxonomy assignment, data normalization, and diversity analyses. Practical concepts and codes for the microbiome analysis will be demonstrated step by step providing a basic guideline for beginner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物组分析初学者指南:基于扩增子的微生物组分析的生物信息学指南和实用概念。
下一代测序技术(NGS)的出现,使得通过高通量读取遗传物质来研究生物体成为可能。该技术在医学、农业、能源和环境等多个领域开辟了微生物研究领域,无需培养即可在感兴趣的环境中研究整个微生物群落。生物信息学分析是表征和分析研究样品中微生物群的必要条件。在本教程中,我们将概述基于高通量16S rRNA基因测序的微生物组分析,这是一种常用的目标序列,用于分类细菌和古细菌。在生物学和技术背景下,将对来自短读测序平台的微生物组数据进行阐明,然后进行微生物组分析的所有重要计算步骤。步骤包括数据预处理、扩增子序列变异分析、分类分配、数据规范化和多样性分析。微生物组分析的实用概念和代码将逐步展示,为初学者提供基本指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Dihydroartemisinin Resistance in Plasmodium falciparum using Pathway Activity Inference An Image Segment-based Classification for Chest X-Ray Image Classification of Protein Crystallization Images using EfficientNet with Data Augmentation Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network Uncovering RNA and DNA Modifications from Native Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1