Color matching by using tuple matching

D. Balthasar
{"title":"Color matching by using tuple matching","authors":"D. Balthasar","doi":"10.1109/ICIAP.2003.1234083","DOIUrl":null,"url":null,"abstract":"We present a new matching method called tuple matching (TM), which is an algorithm for matching image signatures. Since signatures can contain arbitrary features like color, shape, and texture, we focus on signatures that are generated from color histograms by using graph theoretical clustering (GT-clustering). In contrast to histogram intersection (HI) (Swain, M.J. and Ballard, D.H, 1991) or similar approaches, TM defines a similarity measurement with a many to many mapping between tuples in an arbitrary neighborhood in spite of using a one to one mapping between bins as defined by HI. As a result, TM is more robust than HI when the illumination is changing. In contrast to earth mover's distance (EMD) (Rubner, L.J.G.Y. and Tomasi, C., 1998), similarity between signatures is not calculated by using a solution of the transportation problem. Thus the performance of TM is better than EMD.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a new matching method called tuple matching (TM), which is an algorithm for matching image signatures. Since signatures can contain arbitrary features like color, shape, and texture, we focus on signatures that are generated from color histograms by using graph theoretical clustering (GT-clustering). In contrast to histogram intersection (HI) (Swain, M.J. and Ballard, D.H, 1991) or similar approaches, TM defines a similarity measurement with a many to many mapping between tuples in an arbitrary neighborhood in spite of using a one to one mapping between bins as defined by HI. As a result, TM is more robust than HI when the illumination is changing. In contrast to earth mover's distance (EMD) (Rubner, L.J.G.Y. and Tomasi, C., 1998), similarity between signatures is not calculated by using a solution of the transportation problem. Thus the performance of TM is better than EMD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用元组匹配进行颜色匹配
本文提出了一种新的图像签名匹配算法——元组匹配(tuple matching, TM)。由于签名可以包含任意的特征,如颜色、形状和纹理,我们将重点放在使用图理论聚类(gt聚类)从颜色直方图生成的签名上。与直方图交叉(HI) (Swain, M.J.和Ballard, D.H, 1991)或类似的方法相比,TM定义了一种相似性度量,在任意邻域中的元组之间使用多对多映射,尽管使用HI定义的箱与箱之间的一对一映射。因此,当光照变化时,TM比HI具有更强的鲁棒性。与推土机的距离(EMD)相反(Rubner, L.J.G.Y.和Tomasi, C, 1998),特征之间的相似性不是通过使用运输问题的解决方案来计算的。因此,TM的性能优于EMD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1