The potential of Google Analytics for tracking the reading behavior in web books

Lukáš Porsche, Ladislava Zbiejczuk Suchá, J. Martinek
{"title":"The potential of Google Analytics for tracking the reading behavior in web books","authors":"Lukáš Porsche, Ladislava Zbiejczuk Suchá, J. Martinek","doi":"10.1108/dlp-03-2022-0021","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to introduce Google Analytics as a format suitable for advanced tracking of reading behavior within web books, set the metrics for measuring the reading behavior of web books and describe the first results of a pilot study. This paper offers suggestions for further deployment of web books and web analytics in digital libraries and evaluating web books' performance.\n\n\nDesign/methodology/approach\nTo understand the reading behavior of web book users, researchers use quantitative research methods based on custom and advanced metrics at Google Analytics.\n\n\nFindings\nGoogle Analytics is a valuable tool for tracking access to individual books and tracking entire web book collections, mainly if researchers use the combination of unique custom and advanced metrics. A pilot study with 190 users uncovered significant results on reading behavior, for example, the strong preference for scrolling over navigation buttons.\n\n\nResearch limitations/implications\nThis pilot study is limited to measuring two web books and 190 users. This study demonstrated a workable setup of metrics for measuring reading behavior; it would be helpful to continue measurement with a larger sample of books and users.\n\n\nOriginality/value\nResearchers in library and information science currently use web analytics mainly to understand user behavior on the website and in the catalog. This paper presents the possibilities of deploying Google Analytics directly in web books to understand reading behavior.\n","PeriodicalId":438470,"journal":{"name":"Digit. Libr. Perspect.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digit. Libr. Perspect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/dlp-03-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose The purpose of this paper is to introduce Google Analytics as a format suitable for advanced tracking of reading behavior within web books, set the metrics for measuring the reading behavior of web books and describe the first results of a pilot study. This paper offers suggestions for further deployment of web books and web analytics in digital libraries and evaluating web books' performance. Design/methodology/approach To understand the reading behavior of web book users, researchers use quantitative research methods based on custom and advanced metrics at Google Analytics. Findings Google Analytics is a valuable tool for tracking access to individual books and tracking entire web book collections, mainly if researchers use the combination of unique custom and advanced metrics. A pilot study with 190 users uncovered significant results on reading behavior, for example, the strong preference for scrolling over navigation buttons. Research limitations/implications This pilot study is limited to measuring two web books and 190 users. This study demonstrated a workable setup of metrics for measuring reading behavior; it would be helpful to continue measurement with a larger sample of books and users. Originality/value Researchers in library and information science currently use web analytics mainly to understand user behavior on the website and in the catalog. This paper presents the possibilities of deploying Google Analytics directly in web books to understand reading behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谷歌分析在追踪网络图书阅读行为方面的潜力
本文的目的是介绍谷歌分析作为一种适合于网络图书阅读行为高级跟踪的格式,设置衡量网络图书阅读行为的指标,并描述试点研究的第一个结果。本文提出了在数字图书馆进一步部署网络图书和网络分析以及评估网络图书性能的建议。设计/方法论/方法为了了解网络图书用户的阅读行为,研究人员使用基于Google Analytics的定制和高级指标的定量研究方法。谷歌分析是一个很有价值的工具,可以跟踪访问单个书籍和跟踪整个网络图书收藏,主要是如果研究人员使用独特的定制和高级指标的组合。一项针对190名用户的初步研究发现了阅读行为的显著结果,例如,人们对滚动导航按钮的强烈偏好。研究局限性/意义本初步研究仅限于测量两本网络书籍和190名用户。本研究展示了一种可行的测量阅读行为的指标设置;继续使用更大的书籍和用户样本进行测量将会有所帮助。原创性/价值图书馆和信息科学的研究人员目前主要使用网络分析来了解网站和目录中的用户行为。本文介绍了直接在网络图书中部署谷歌分析来理解阅读行为的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A partnership between the library and the digital humanities scholars: interview with Plamen Miltenoff Identifying research fronts in NLP applications in library and information science using meta-analysis approaches Open access initiatives in European countries: analysis of trends and policies Cyber security in university libraries and implication for library and information science education in Nigeria The Cologne Public Library as accelerator of digitisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1