{"title":"Identifying research fronts in NLP applications in library and information science using meta-analysis approaches","authors":"Debasis Majhi, Bhaskar Mukherjee","doi":"10.1108/dlp-12-2022-0099","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to identify the research fronts by analysing highly cited core papers adjusted with the age of a paper in library and information science (LIS) where natural language processing (NLP) is being applied significantly.\n\n\nDesign/methodology/approach\nBy excavating international databases, 3,087 core papers that received at least 5% of the total citations have been identified. By calculating the average mean years of these core papers, and total citations received, a CPT (citation/publication/time) value was calculated in all 20 fronts to understand how a front is relatively receiving greater attention among peers within a course of time. One theme article has been finally identified from each of these 20 fronts.\n\n\nFindings\nBidirectional encoder representations from transformers with CPT value 1.608 followed by sentiment analysis with CPT 1.292 received highest attention in NLP research. Columbia University New York, in terms of University, Journal of the American Medical Informatics Association, in terms of journals, USA followed by People Republic of China, in terms of country and Xu, H., University of Texas, in terms of author are the top in these fronts. It is identified that the NLP applications boost the performance of digital libraries and automated library systems in the digital environment.\n\n\nPractical implications\nAny research fronts that are identified in the findings of this paper may be used as a base for researchers who intended to perform extensive research on NLP.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, the methodology adopted in this paper is the first of its kind where meta-analysis approach has been used for understanding the research fronts in sub field like NLP for a broad domain like LIS.\n","PeriodicalId":438470,"journal":{"name":"Digit. Libr. Perspect.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digit. Libr. Perspect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/dlp-12-2022-0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to identify the research fronts by analysing highly cited core papers adjusted with the age of a paper in library and information science (LIS) where natural language processing (NLP) is being applied significantly.
Design/methodology/approach
By excavating international databases, 3,087 core papers that received at least 5% of the total citations have been identified. By calculating the average mean years of these core papers, and total citations received, a CPT (citation/publication/time) value was calculated in all 20 fronts to understand how a front is relatively receiving greater attention among peers within a course of time. One theme article has been finally identified from each of these 20 fronts.
Findings
Bidirectional encoder representations from transformers with CPT value 1.608 followed by sentiment analysis with CPT 1.292 received highest attention in NLP research. Columbia University New York, in terms of University, Journal of the American Medical Informatics Association, in terms of journals, USA followed by People Republic of China, in terms of country and Xu, H., University of Texas, in terms of author are the top in these fronts. It is identified that the NLP applications boost the performance of digital libraries and automated library systems in the digital environment.
Practical implications
Any research fronts that are identified in the findings of this paper may be used as a base for researchers who intended to perform extensive research on NLP.
Originality/value
To the best of the authors’ knowledge, the methodology adopted in this paper is the first of its kind where meta-analysis approach has been used for understanding the research fronts in sub field like NLP for a broad domain like LIS.