Printed sensors for damage detection in large engineering structures

D. Zymelka, Takeshi Kobayashi
{"title":"Printed sensors for damage detection in large engineering structures","authors":"D. Zymelka, Takeshi Kobayashi","doi":"10.1109/fleps53764.2022.9781530","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate large-scale sensors, intended for damage detection in various engineering structures, within the framework of structural health monitoring. The construction of sensors is based on a hybrid structure of a conductive intermittent pattern (made of silver) with embedded sensing elements made of a carbon-based resistive ink. Because the electrical resistance of the silver pattern was much lower than that of the resistance of sensing elements, the sensing properties of such sensors depend mainly on the properties of the carbon ink. Thanks to such construction, it was possible to achieve the electrical resistance of 1-m-long sensors within the desired range. Conducted laboratory tests have shown relatively low sensitivity to temperature changes and the capability of the sensors for damage detection.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we demonstrate large-scale sensors, intended for damage detection in various engineering structures, within the framework of structural health monitoring. The construction of sensors is based on a hybrid structure of a conductive intermittent pattern (made of silver) with embedded sensing elements made of a carbon-based resistive ink. Because the electrical resistance of the silver pattern was much lower than that of the resistance of sensing elements, the sensing properties of such sensors depend mainly on the properties of the carbon ink. Thanks to such construction, it was possible to achieve the electrical resistance of 1-m-long sensors within the desired range. Conducted laboratory tests have shown relatively low sensitivity to temperature changes and the capability of the sensors for damage detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大型工程结构损伤检测的印刷传感器
在这项研究中,我们展示了大型传感器,用于各种工程结构的损伤检测,在结构健康监测的框架内。传感器的结构是基于导电间歇图案(由银制成)的混合结构,嵌入由碳基电阻油墨制成的传感元件。由于银图案的电阻远低于传感元件的电阻,因此这种传感器的传感性能主要取决于碳墨水的性能。由于这种结构,可以在期望的范围内实现1米长的传感器的电阻。进行的实验室测试表明,传感器对温度变化的灵敏度相对较低,对损伤的检测能力也较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducting Polymer based Field-Effect Transistor for Volatile Organic Compound Sensing Demonstration of near-field capacitive standard communication bus for ultrathin reconfigurable sensor nodes 3D Printed Embedded Strain Sensor with Enhanced Performance Flexible and stretchable conductive fabric for temperature detection Facile Fabrication of Graphene Oxide-based Flexible Temperature Sensor and Improving its Humidity Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1