Sparse Linear Phase FIR Filter Design using Iterative CSA

H. Kwan, Jiajun Liang, A. Jiang
{"title":"Sparse Linear Phase FIR Filter Design using Iterative CSA","authors":"H. Kwan, Jiajun Liang, A. Jiang","doi":"10.1109/ICDSP.2018.8631659","DOIUrl":null,"url":null,"abstract":"In this paper, sparse linear phase FIR Iowpass digital filter design using iterative cuckoo search algorithm with step-descendant coefficient thresholding is presented. During each iteration, the least-squares frequency response error is minimized using cuckoo search algorithm. A step-descendant coefficient threshold is used to iteratively update the zero-valued filter coefficients. With the same set of sparsity levels, the obtained design results indicate that smaller weighted least-squares errors and slightly smaller peak magnitude errors can be obtained when compared to those of a recent design method.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, sparse linear phase FIR Iowpass digital filter design using iterative cuckoo search algorithm with step-descendant coefficient thresholding is presented. During each iteration, the least-squares frequency response error is minimized using cuckoo search algorithm. A step-descendant coefficient threshold is used to iteratively update the zero-valued filter coefficients. With the same set of sparsity levels, the obtained design results indicate that smaller weighted least-squares errors and slightly smaller peak magnitude errors can be obtained when compared to those of a recent design method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迭代CSA的稀疏线性相位FIR滤波器设计
本文提出了一种基于阶跃-后裔系数阈值迭代布谷鸟搜索算法的稀疏线性相位FIR低通数字滤波器设计方法。在每次迭代过程中,采用布谷鸟搜索算法最小化最小二乘频响误差。采用阶跃系数阈值迭代更新零值滤波器系数。在相同的稀疏度水平下,所获得的设计结果表明,与最近的设计方法相比,可以获得更小的加权最小二乘误差和略小的峰值幅度误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1