Tuning optical properties of conjugated molecules by Lewis acids: Insights from electronic structure modeling and machine learning

Hung Phan, Thomas Jerome Kelly, H. Huynh, An Nguyen, A. Zhugayevych, S. Tretiak, Thuc‐Quyen Nguyen, E. Jarvis
{"title":"Tuning optical properties of conjugated molecules by Lewis acids: Insights from electronic structure modeling and machine learning","authors":"Hung Phan, Thomas Jerome Kelly, H. Huynh, An Nguyen, A. Zhugayevych, S. Tretiak, Thuc‐Quyen Nguyen, E. Jarvis","doi":"10.1117/12.2594321","DOIUrl":null,"url":null,"abstract":"The change in optical properties of an organic semiconductors upon forming adducts with inexpensive small molecules is attractive in organic electronics. We focus on the adducts of conjugated molecules and Lewis acids (CM-LA), formed by the partial electron transfer from a CM containing a Lewis basic site to an LA such as BF3 and B(C6F5)3. The resulting adducts showed intriguing optoelectronic properties, including a red-shift in optical transitions and an increase in charge carrier density compared to the parent conjugated molecules. In this work, we combine electronic structure modelling and machine learning (ML) to quantify, analyze and predict the electron transfers and red-shifts of the adducts from chemical structures. For ML model, we utilize DFT-calculated electron transfers and redshifts and molecular descriptors readily calculated from molecular structures. Our work can help researchers in other fields in predicting fundamental properties from molecular structures.","PeriodicalId":295051,"journal":{"name":"Organic and Hybrid Sensors and Bioelectronics XIV","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Sensors and Bioelectronics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The change in optical properties of an organic semiconductors upon forming adducts with inexpensive small molecules is attractive in organic electronics. We focus on the adducts of conjugated molecules and Lewis acids (CM-LA), formed by the partial electron transfer from a CM containing a Lewis basic site to an LA such as BF3 and B(C6F5)3. The resulting adducts showed intriguing optoelectronic properties, including a red-shift in optical transitions and an increase in charge carrier density compared to the parent conjugated molecules. In this work, we combine electronic structure modelling and machine learning (ML) to quantify, analyze and predict the electron transfers and red-shifts of the adducts from chemical structures. For ML model, we utilize DFT-calculated electron transfers and redshifts and molecular descriptors readily calculated from molecular structures. Our work can help researchers in other fields in predicting fundamental properties from molecular structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
路易斯酸调节共轭分子的光学性质:来自电子结构建模和机器学习的见解
有机半导体与廉价的小分子形成加合物后光学性质的变化在有机电子学中是有吸引力的。我们重点研究共轭分子和路易斯酸(CM-LA)的加合物,这些加合物是由含有路易斯碱基的CM部分电子转移到像BF3和B(C6F5)3这样的LA而形成的。所得的加合物显示出有趣的光电特性,包括光学跃迁的红移和与母体共轭分子相比载流子密度的增加。在这项工作中,我们结合了电子结构建模和机器学习(ML)来量化、分析和预测化学结构中加合物的电子转移和红移。对于ML模型,我们利用dft计算的电子转移和红移以及从分子结构中容易计算的分子描述符。我们的工作可以帮助其他领域的研究人员预测分子结构的基本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11810 Tuning optical properties of conjugated molecules by Lewis acids: Insights from electronic structure modeling and machine learning Enhanced lead sulfide quantum dots infrared photodetector performance through ligand exchange Organic radiation detectors for real-time dosimetry Organic field-effect transistors as radiation dosimeters in medical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1