Enhanced lead sulfide quantum dots infrared photodetector performance through ligand exchange

Shichen Yin, F. So, S. Ding, Li-ping Zhu, Qi Dong, Carr Hoi Yi Ho
{"title":"Enhanced lead sulfide quantum dots infrared photodetector performance through ligand exchange","authors":"Shichen Yin, F. So, S. Ding, Li-ping Zhu, Qi Dong, Carr Hoi Yi Ho","doi":"10.1117/12.2603399","DOIUrl":null,"url":null,"abstract":"Narrow bandgap lead sulfide (PbS) quantum dots (QDs) are solution-processed materials used for optoelectronic applications in the short-wavelength infrared (SWIR) range (1400 - 3000 nm). The PbS QDs based photodetector has achieved comparable detectivity with current commercial SWIR sensors. However, there are still obstacles towards commercialization in commonly used layer by layer (LbL) deposition, such as high material consumption and low reproducibility. Here, we developed a new ligand exchange strategy to prepare ligand exchanged QD inks for single-step PbS film deposition. Compared with LbL deposition, the EQE of PbS QD photodetector made by single-step deposition has improved from 31% to 53%. The EQE and responsivity can be further improved to 95% with IR transparent electrode.","PeriodicalId":295051,"journal":{"name":"Organic and Hybrid Sensors and Bioelectronics XIV","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Sensors and Bioelectronics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Narrow bandgap lead sulfide (PbS) quantum dots (QDs) are solution-processed materials used for optoelectronic applications in the short-wavelength infrared (SWIR) range (1400 - 3000 nm). The PbS QDs based photodetector has achieved comparable detectivity with current commercial SWIR sensors. However, there are still obstacles towards commercialization in commonly used layer by layer (LbL) deposition, such as high material consumption and low reproducibility. Here, we developed a new ligand exchange strategy to prepare ligand exchanged QD inks for single-step PbS film deposition. Compared with LbL deposition, the EQE of PbS QD photodetector made by single-step deposition has improved from 31% to 53%. The EQE and responsivity can be further improved to 95% with IR transparent electrode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过配体交换增强硫化铅量子点红外光电探测器性能
窄带隙硫化铅(PbS)量子点(QDs)是一种用于短波红外(SWIR)范围(1400 - 3000 nm)光电应用的溶液处理材料。基于PbS量子点的光电探测器已经实现了与当前商用SWIR传感器相当的探测能力。然而,目前常用的逐层沉积(LbL)技术仍存在材料消耗大、可重复性低等障碍。在这里,我们开发了一种新的配体交换策略来制备配体交换的量子点油墨,用于单步PbS薄膜沉积。与LbL沉积法相比,单步沉积法制备的PbS QD光电探测器EQE由31%提高到53%。采用红外透明电极可将EQE和响应率进一步提高到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11810 Tuning optical properties of conjugated molecules by Lewis acids: Insights from electronic structure modeling and machine learning Enhanced lead sulfide quantum dots infrared photodetector performance through ligand exchange Organic radiation detectors for real-time dosimetry Organic field-effect transistors as radiation dosimeters in medical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1