High performance multivariate visual data exploration for extremely large data

O. Rübel, Prabhat, Kesheng Wu, H. Childs, J. Meredith, C. Geddes, E. Cormier-Michel, Sean Ahern, G. Weber, P. Messmer, H. Hagen, B. Hamann, E. W. Bethel
{"title":"High performance multivariate visual data exploration for extremely large data","authors":"O. Rübel, Prabhat, Kesheng Wu, H. Childs, J. Meredith, C. Geddes, E. Cormier-Michel, Sean Ahern, G. Weber, P. Messmer, H. Hagen, B. Hamann, E. W. Bethel","doi":"10.1145/1413370.1413422","DOIUrl":null,"url":null,"abstract":"One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能多变量可视化数据探索,用于超大数据
现代科学的核心挑战之一是需要从大量复杂的数据中快速获得知识和理解。我们提出了一种新的方法,通过结合和扩展高性能可视化数据分析和科学数据管理技术来应对这一挑战。该方法是在激光尾流场加速器模拟产生的复杂时变数据集中获得洞察力的背景下进行演示的。我们的方法利用基于直方图的并行坐标来显示视觉信息,并作为指导数据挖掘操作的工具。数据提取和子集使用最先进的索引/查询技术实现。此方法虽然应用于加速器科学,但通常适用于广泛的科学应用程序集,并在生产质量的可视化数据分析基础设施中实现。我们进行了详细的性能分析,并在分布式内存Cray XT4系统上展示了良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient auction-based grid reservations using dynamic programming Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers Nimrod/K: Towards massively parallel dynamic Grid workflows Global Trees: A framework for linked data structures on distributed memory parallel systems Bandwidth intensive 3-D FFT kernel for GPUs using CUDA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1