An Intelligent Algorithm for Maximum Power Point Tracking in PV Systems through Load Management

K. Tan, Joseph A. Azzolini, William J. Parquette, Christian R. Polo, Meng Tao
{"title":"An Intelligent Algorithm for Maximum Power Point Tracking in PV Systems through Load Management","authors":"K. Tan, Joseph A. Azzolini, William J. Parquette, Christian R. Polo, Meng Tao","doi":"10.1109/pvsc48317.2022.9938740","DOIUrl":null,"url":null,"abstract":"Practically all of today’ photovoltaic (PV) systems employ a maximum power point tracker (MPPT) to maximize the power output of a PV array under different temperature, weather, and irradiance conditions. We proposed and demonstrated a load-matching PV system which performs maximum power point tracking by varying the number of loads connected to the PV array, without a conventional MPPT. However, the control algorithm in our system makes many unsuccessful switches as it does not know the optimum switch points for the loads. This paper presents an intelligent algorithm that can estimate the optimum switch point before attempting a switch. Simulation and experimental results show that the proposed algorithm is effective in minimizing unsuccessful switches. These results demonstrate an improved algorithm for maximum power point tracking through load management.","PeriodicalId":435386,"journal":{"name":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc48317.2022.9938740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Practically all of today’ photovoltaic (PV) systems employ a maximum power point tracker (MPPT) to maximize the power output of a PV array under different temperature, weather, and irradiance conditions. We proposed and demonstrated a load-matching PV system which performs maximum power point tracking by varying the number of loads connected to the PV array, without a conventional MPPT. However, the control algorithm in our system makes many unsuccessful switches as it does not know the optimum switch points for the loads. This paper presents an intelligent algorithm that can estimate the optimum switch point before attempting a switch. Simulation and experimental results show that the proposed algorithm is effective in minimizing unsuccessful switches. These results demonstrate an improved algorithm for maximum power point tracking through load management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于负荷管理的光伏系统最大功率跟踪智能算法
实际上,当今所有的光伏(PV)系统都采用最大功率点跟踪器(MPPT)来最大限度地提高光伏阵列在不同温度、天气和辐照度条件下的功率输出。我们提出并演示了一种负载匹配PV系统,该系统通过改变连接到PV阵列的负载数量来执行最大功率点跟踪,而无需传统的MPPT。然而,本系统的控制算法由于不知道负载的最佳切换点,导致多次切换失败。本文提出了一种智能算法,可以在尝试切换前估计最佳切换点。仿真和实验结果表明,该算法能有效地减少不成功切换。这些结果证明了一种通过负载管理实现最大功率点跟踪的改进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paving the Way to Building-Integrated Translucent Tandem Photovoltaics: Process Optimization and Transfer to Perovskite-Perovskite 2-Terminal Tandem Cells A Silicon learning curve and polysilicon requirements for broad-electrification with photovoltaics by 2050 Effect of Metal Halides Treatment on High Throughput Low Temperature CIGS Solar Cells Three general methods for predicting bifacial photovoltaic performance including spectral albedo Diffraction-optimized surface structures for enhanced light harvesting in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1