{"title":"Portable battery-less noncontact temperature measurement system powered on-demand by human action","authors":"D. Alghisi, M. Ferrari, V. Ferrari","doi":"10.1109/ETFA.2013.6648134","DOIUrl":null,"url":null,"abstract":"This paper presents an autonomous battery-less temperature measurement system powered on-demand by human action. The conversion between the human action and electrical energy is provided by an hand-held electromagnetic (EM) converter intentionally activated by the user. The AC voltage generated by the EM converter has time-varying amplitude and frequency and is rectified by a voltage doubler active rectifier circuit. The energy harvested is stored into multiple capacitors by the innovative Sequential Charging of Storage Capacitors (SCSC) technique. With a force of about 29.4 N over 2 cm applied to the EM converter, the power management circuit is able to extract an energy of 27.5 mJ and power the noncontact temperature measurement system for about 17 s.","PeriodicalId":106678,"journal":{"name":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2013.6648134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an autonomous battery-less temperature measurement system powered on-demand by human action. The conversion between the human action and electrical energy is provided by an hand-held electromagnetic (EM) converter intentionally activated by the user. The AC voltage generated by the EM converter has time-varying amplitude and frequency and is rectified by a voltage doubler active rectifier circuit. The energy harvested is stored into multiple capacitors by the innovative Sequential Charging of Storage Capacitors (SCSC) technique. With a force of about 29.4 N over 2 cm applied to the EM converter, the power management circuit is able to extract an energy of 27.5 mJ and power the noncontact temperature measurement system for about 17 s.