Cleaning Training-Datasets with Noise-Aware Algorithms

H. Escalante
{"title":"Cleaning Training-Datasets with Noise-Aware Algorithms","authors":"H. Escalante","doi":"10.1109/ENC.2006.7","DOIUrl":null,"url":null,"abstract":"We introduce a novel learning algorithm for noise elimination. Our algorithm is based on the re-measurement idea for the correction of erroneous observations and is able to discriminate between noisy and noiseless observations by using kernel methods. We apply our noise-aware algorithms to several domains including: astronomy, face recognition and ten machine learning benchmark datasets. Experimental results adding noise and useful anomalies to the data show that our algorithm improves data quality, without having to eliminate any observation from the original dataset","PeriodicalId":432491,"journal":{"name":"2006 Seventh Mexican International Conference on Computer Science","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Seventh Mexican International Conference on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENC.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel learning algorithm for noise elimination. Our algorithm is based on the re-measurement idea for the correction of erroneous observations and is able to discriminate between noisy and noiseless observations by using kernel methods. We apply our noise-aware algorithms to several domains including: astronomy, face recognition and ten machine learning benchmark datasets. Experimental results adding noise and useful anomalies to the data show that our algorithm improves data quality, without having to eliminate any observation from the original dataset
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用噪声感知算法清洗训练数据集
提出了一种新的噪声消除学习算法。该算法基于校正错误观测值的重测思想,并采用核方法区分有噪声和无噪声观测值。我们将噪声感知算法应用于多个领域,包括:天文学、人脸识别和10个机器学习基准数据集。实验结果表明,在不消除原始数据集中任何观测值的情况下,该算法提高了数据质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Invited Talk Abstracts The Crescent Lab: A smart home lab for students Adaptive Node Refinement Collocation Method for Partial Differential Equations Defining new argumentation-based semantics by minimal models Multi-robot Motion Coordination based on Swing Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1