{"title":"A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization","authors":"Thi-Hau Nguyen, Trung-Tuan Do, Duc-Nhan Nguyen, Dang-Nhac Lu, Ha-Nam Nguyen","doi":"10.25073/2588-1086/VNUCSCE.236","DOIUrl":null,"url":null,"abstract":"TThis paper presents a hybrid method that combines the genetic algorithm (GA) and the ant colony system algorithm (ACS), namely GACS, to solve the traffic routing problem. In the proposed framework, we use the genetic algorithm to optimize the ACS parameters in order to attain the best trips and travelling time through several novel functions to help ants to update the global and local pheromones. The GACS framework is implemented using the VANETsim package and the real city maps from the open street map project. The experimental results show that our framework achieves a considerably higher performance than A-Star and the classical ACS algorithms in terms of the length of the global best path and the time for trips. Moreover, the GACS framework is also efficient in solving the congestion problem by online monitoring the conditions of traffic light systems. \nKeywordsTraffic routing; Ant colony system; Genetic algorithm; VANET simulator. \nReferences \n[1] M. Dorigo, Ant colony optimization, Scholarpedia 2(3) (2007) 1461. https://doi.org/10/4249/scholarpedia.1461.[2] M.V. Dorigo, Maniezzo, A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 26(1) (1996) 29-41.[3] M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Transactions on evolutionary computation 1(1) (1997) 53-66.[4] M. Dorigo, T. St¨utzle, Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.[5] D. Favaretto, E. Moretti, P. Pellegrini, On the explorative behavior of MAX-MIN Ant. System, In: St¨utzle T, Birattari M, Hoos HH (eds) Engineering Stochastic Local Search Algorithms, Designing, Implementing and Analyzing Effective Heuristics. SLS 2009, LNCS, Springer, Heidelberg, Germany 5752 (2009) 115-119.[6] F. Lobo, C.F. Lima, Z. Michalewicz (eds), Parameter Setting in Evolutionary Algorithms, Springer, Berlin, Germany, 2007.[7] T. Stützle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur, Marco Montes de Oca, Mauro Birattari, Marco Dorigo, Parameter adaptation in ant colony optimization in Autonomous search, Springer, 2011, pp. 191-215.[8] Z. Cai, H. Huang, Ant colony optimization algorithm based on adaptive weight and volatility parameters in Intelligent Information Technology Application, 2008. IITA'08, Second International Symposium IEEE, 2008.[9] J. Liu, Shenghua Xu, Fuhao Zhang, Liang Wang, A hybrid genetic-ant colony optimization algorithm for the optimal path selection, Intelligent Automation & Soft Computing, 2016, pp. 1-8.[10] D.Gaertner K.L. Clark, On Optimal Parameters for Ant Colony Optimization Algorithms, In IC-AI, 2005.[11] X.Wei, Parameters Analysis for Basic Ant Colony Optimization Algorithm in TSP, Reason 7(4) (2014) 159-170.[12] J.H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence, U Michigan Press, 1975.[13] K.D.E. Sastry, Goldberg, G. Kendall, Genetic algorithms, In Search methodologies, Springer, 2014, pp. 93-117.[14] S.M. Odeh, Management of an intelligent traffic light system by using genetic algorithm, Journal of Image and Graphics 1(2) (2013) 90-93.[15] A.M. Turky, M.S. Ahmad, M.Z.M. Yusoff, B.T. Hammad, Using Genetic Algorithm for Traffic Light Control System with a Pedestrian Crossing, In: Wen P., Li Y., Polkowski L., Yao Y., Tsumoto S., Wang G. (eds) Rough Sets and Knowledge Technology, RSKT 2009, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg 5589 (2009) 512-519.[16] Y.R.B. Al-Mayouf, Mahamod Ismail1, Nor Fadzilah Abdullah, Salih M. Al-Qaraawi, Omar Adil Mahdi, Survey On Vanet Technologies And Simulation Models, 2006.[17] S.A. Ben Mussa, M. Manaf, K.Z. Ghafoor, Z. Doukha, \"Simulation tools for vehicular ad hoc networks: A comparison study and future perspectives\", 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakech, 2015, pp. 1-8.[18] V. Cristea, Victor Gradinescu, Cristian Gorgorin, Raluca Diaconescu, Liviu Iftode, Simulation of vanet applications, Automotive Informatics and Communicative Systems, 2009.[19] L. Liang, J. Ye, D. Wei, Application of improved ant colony system algorithm in optimization of irregular parts nesting, In 2008 Fourth International Conference on Natural Computation, IEEE, 2008.[20] X. Yan, Research on the Hybrid ant Colony Algorithm based on Genetic Algorithm. International Journal of Signal Processing, Image Processing and Pattern Recognition 9(3) (2016) 155-166.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/VNUCSCE.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
TThis paper presents a hybrid method that combines the genetic algorithm (GA) and the ant colony system algorithm (ACS), namely GACS, to solve the traffic routing problem. In the proposed framework, we use the genetic algorithm to optimize the ACS parameters in order to attain the best trips and travelling time through several novel functions to help ants to update the global and local pheromones. The GACS framework is implemented using the VANETsim package and the real city maps from the open street map project. The experimental results show that our framework achieves a considerably higher performance than A-Star and the classical ACS algorithms in terms of the length of the global best path and the time for trips. Moreover, the GACS framework is also efficient in solving the congestion problem by online monitoring the conditions of traffic light systems.
KeywordsTraffic routing; Ant colony system; Genetic algorithm; VANET simulator.
References
[1] M. Dorigo, Ant colony optimization, Scholarpedia 2(3) (2007) 1461. https://doi.org/10/4249/scholarpedia.1461.[2] M.V. Dorigo, Maniezzo, A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 26(1) (1996) 29-41.[3] M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Transactions on evolutionary computation 1(1) (1997) 53-66.[4] M. Dorigo, T. St¨utzle, Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.[5] D. Favaretto, E. Moretti, P. Pellegrini, On the explorative behavior of MAX-MIN Ant. System, In: St¨utzle T, Birattari M, Hoos HH (eds) Engineering Stochastic Local Search Algorithms, Designing, Implementing and Analyzing Effective Heuristics. SLS 2009, LNCS, Springer, Heidelberg, Germany 5752 (2009) 115-119.[6] F. Lobo, C.F. Lima, Z. Michalewicz (eds), Parameter Setting in Evolutionary Algorithms, Springer, Berlin, Germany, 2007.[7] T. Stützle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur, Marco Montes de Oca, Mauro Birattari, Marco Dorigo, Parameter adaptation in ant colony optimization in Autonomous search, Springer, 2011, pp. 191-215.[8] Z. Cai, H. Huang, Ant colony optimization algorithm based on adaptive weight and volatility parameters in Intelligent Information Technology Application, 2008. IITA'08, Second International Symposium IEEE, 2008.[9] J. Liu, Shenghua Xu, Fuhao Zhang, Liang Wang, A hybrid genetic-ant colony optimization algorithm for the optimal path selection, Intelligent Automation & Soft Computing, 2016, pp. 1-8.[10] D.Gaertner K.L. Clark, On Optimal Parameters for Ant Colony Optimization Algorithms, In IC-AI, 2005.[11] X.Wei, Parameters Analysis for Basic Ant Colony Optimization Algorithm in TSP, Reason 7(4) (2014) 159-170.[12] J.H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence, U Michigan Press, 1975.[13] K.D.E. Sastry, Goldberg, G. Kendall, Genetic algorithms, In Search methodologies, Springer, 2014, pp. 93-117.[14] S.M. Odeh, Management of an intelligent traffic light system by using genetic algorithm, Journal of Image and Graphics 1(2) (2013) 90-93.[15] A.M. Turky, M.S. Ahmad, M.Z.M. Yusoff, B.T. Hammad, Using Genetic Algorithm for Traffic Light Control System with a Pedestrian Crossing, In: Wen P., Li Y., Polkowski L., Yao Y., Tsumoto S., Wang G. (eds) Rough Sets and Knowledge Technology, RSKT 2009, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg 5589 (2009) 512-519.[16] Y.R.B. Al-Mayouf, Mahamod Ismail1, Nor Fadzilah Abdullah, Salih M. Al-Qaraawi, Omar Adil Mahdi, Survey On Vanet Technologies And Simulation Models, 2006.[17] S.A. Ben Mussa, M. Manaf, K.Z. Ghafoor, Z. Doukha, "Simulation tools for vehicular ad hoc networks: A comparison study and future perspectives", 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakech, 2015, pp. 1-8.[18] V. Cristea, Victor Gradinescu, Cristian Gorgorin, Raluca Diaconescu, Liviu Iftode, Simulation of vanet applications, Automotive Informatics and Communicative Systems, 2009.[19] L. Liang, J. Ye, D. Wei, Application of improved ant colony system algorithm in optimization of irregular parts nesting, In 2008 Fourth International Conference on Natural Computation, IEEE, 2008.[20] X. Yan, Research on the Hybrid ant Colony Algorithm based on Genetic Algorithm. International Journal of Signal Processing, Image Processing and Pattern Recognition 9(3) (2016) 155-166.
本文提出了一种结合遗传算法(GA)和蚁群系统算法(ACS)的混合方法来解决交通路由问题。在该框架中,我们使用遗传算法优化ACS参数,通过几个新颖的函数来帮助蚂蚁更新全局和局部信息素,以获得最佳行程和旅行时间。GACS框架使用VANETsim包和来自开放街道地图项目的真实城市地图来实现。实验结果表明,在全局最优路径长度和行程时间方面,我们的框架比a - star和经典的ACS算法取得了相当高的性能。此外,GACS框架还可以通过在线监测交通灯系统的状态来有效地解决拥堵问题。KeywordsTraffic路由;蚁群系统;遗传算法;VANET模拟器。[1] M. Dorigo,蚁群优化算法,中文信息学报2(3)(2007):1461。https://doi.org/10/4249/scholarpedia.1461.[2]马尼卓,马尼卓。蚁群系统的优化研究,计算机工程学报,26(1)(1996):29-41.[3]张志刚,吴志刚,基于蚁群学习的旅行商问题求解方法,计算机科学与技术,第1期(1997):53-66.[4]M. Dorigo, T. St¨utzle,蚁群优化。麻省理工学院出版社,剑桥,马萨诸塞州,2004.[5]D. Favaretto, E. Moretti, P. Pellegrini,最大最小蚂蚁的探索行为。系统工程,[j],李建平,李建平,等。随机局部搜索算法的设计、实现与分析。SLS 2009, LNCS, Springer,海德堡,德国5752 (2009)115-119.[6]李志强,李志强,李志强,李志强(主编),进化算法中的参数设置,计算机工程学报,2007.[7]T. st tzle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur, Marco Montes de Oca, Mauro Birattari, Marco Dorigo,自主搜索中蚁群优化的参数自适应,Springer, 2011, pp 191-215.[8]蔡志强,黄辉,基于自适应权重和波动率参数的蚁群优化算法在智能信息技术应用中的应用,2008。[9]中华人民大学学报(自然科学版),2008.[9]刘军,徐盛华,张福豪,王亮,一种混合遗传-蚁群优化算法,智能自动化与软计算,2016,pp. 1-8.[10]李建军,李建军,李建军,等。蚁群优化算法的研究进展,计算机工程,2005.[11]魏新,TSP中基本蚁群优化算法的参数分析,原因7(4)(2014)159-170.[12]J.H. Holland,自然和人工系统的适应:应用于生物学、控制和人工智能的介绍性分析,密歇根大学出版社,1975.[13]郭海燕,郭海燕,郭海燕,遗传算法,In Search methodologies, Springer, 2014, pp 93-117.[14]吴晓明。基于遗传算法的智能交通灯系统管理,中国图象图形学报(2)(2013):90-93.[15]上午李勇,王国强,王刚,王刚(编)基于粗糙集和知识技术的交通信号灯控制系统,中国公路学报,2009,vol . 32 (6): 557 - 557 .[16]杨建军,杨建军,杨建军,杨建军,网络技术与网络仿真,2006.[17]A. Ben Mussa, M. Manaf, K.Z. Ghafoor, Z. Doukha,“车辆自组织网络的仿真工具:比较研究和未来展望”,2015年国际无线网络与移动通信会议(WINCOM), Marrakech, 2015, pp. 1-8.[18]李建军,李建军,李建军,车用自动驾驶汽车仿真系统,汽车信息与通信系统,2009.[19]梁磊,叶建军,魏德东,基于蚁群算法的异形零件嵌套优化,计算机工程,2008,[20]闫欣,基于遗传算法的混合蚁群算法研究。国际信号处理,图像处理与模式识别学报9(3)(2016)155-166。