Power-aware deployment and control of forced-convection and thermoelectric coolers

M. Dousti, Massoud Pedram
{"title":"Power-aware deployment and control of forced-convection and thermoelectric coolers","authors":"M. Dousti, Massoud Pedram","doi":"10.1145/2593069.2593186","DOIUrl":null,"url":null,"abstract":"Advances in the thermoelectric cooling technology have made it one of the promising solutions for spot cooling in VLSI circuits. Thermoelectric coolers (TECs) generate heat during their operation. This heat plus the heat generated in the circuit should be transferred to the ambient environment in order to avoid high die temperatures. This paper describes a hybrid cooling solution in which TECs are augmented with forced-convection coolers (fans). Precisely, an optimization framework called OFTEC is presented which finds the optimum TEC driving current and the fan speed to minimize the overall power consumption of the cooling system while maintaining safe die temperatures. Simulation results on a set of eight benchmarks show the benefits of the proposed approach. In particular, a baseline system without TECs but with a fan could meet the thermal constraint for only three of the benchmarks whereas the OFTEC solution satisfied thermal constraints for all benchmarks. In addition, OFTEC resulted in 5.4% less average power consumption for the aforesaid three benchmarks while lowering the maximum die temperature by an average of 3.7°C.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"144 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Advances in the thermoelectric cooling technology have made it one of the promising solutions for spot cooling in VLSI circuits. Thermoelectric coolers (TECs) generate heat during their operation. This heat plus the heat generated in the circuit should be transferred to the ambient environment in order to avoid high die temperatures. This paper describes a hybrid cooling solution in which TECs are augmented with forced-convection coolers (fans). Precisely, an optimization framework called OFTEC is presented which finds the optimum TEC driving current and the fan speed to minimize the overall power consumption of the cooling system while maintaining safe die temperatures. Simulation results on a set of eight benchmarks show the benefits of the proposed approach. In particular, a baseline system without TECs but with a fan could meet the thermal constraint for only three of the benchmarks whereas the OFTEC solution satisfied thermal constraints for all benchmarks. In addition, OFTEC resulted in 5.4% less average power consumption for the aforesaid three benchmarks while lowering the maximum die temperature by an average of 3.7°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功率感知部署和控制强制对流和热电冷却器
热电冷却技术的进步使其成为超大规模集成电路中有前途的点冷却解决方案之一。热电冷却器(tec)在运行过程中产生热量。这些热量加上电路中产生的热量应传递到周围环境中,以避免模具温度过高。本文描述了一种混合冷却解决方案,其中tec增加了强制对流冷却器(风扇)。准确地说,提出了一种称为OFTEC的优化框架,该框架可以找到最佳的TEC驱动电流和风扇速度,以最大限度地降低冷却系统的总体功耗,同时保持安全的模具温度。在一组8个基准上的仿真结果显示了所提出方法的优点。特别是,没有tec但有风扇的基准系统只能满足三个基准的热约束,而OFTEC解决方案满足所有基准的热约束。此外,OFTEC使上述三个基准的平均功耗降低了5.4%,同时将最高模具温度平均降低了3.7°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1