A high-throughput 16× super resolution processor for real-time object recognition SoC

Junyoung Park, Byeong-Gyu Nam, H. Yoo
{"title":"A high-throughput 16× super resolution processor for real-time object recognition SoC","authors":"Junyoung Park, Byeong-Gyu Nam, H. Yoo","doi":"10.1109/ESSCIRC.2013.6649122","DOIUrl":null,"url":null,"abstract":"High-resolution image offers more details compared to low-resolution image and consequently improves the accuracy of object recognition. However, higher resolution requires a costly hardware for large image sensor, or computation for additional signal processing. In this paper, we present a high-throughput super resolution processor for high-resolution object recognition. In order to perform super resolution with the real-time object recognition SoC, the algorithm-specific hardware is proposed with 2-D image cache and locality-sensitive hashing accelerator for high-throughput image fetching and searching. As a result, the proposed super resolution processor generates up to 16× higher resolution images with 3,125 fps throughput and 2.0 nJ/pixel energy efficiency, enabling high-resolution pre-processing for real-time object recognition.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High-resolution image offers more details compared to low-resolution image and consequently improves the accuracy of object recognition. However, higher resolution requires a costly hardware for large image sensor, or computation for additional signal processing. In this paper, we present a high-throughput super resolution processor for high-resolution object recognition. In order to perform super resolution with the real-time object recognition SoC, the algorithm-specific hardware is proposed with 2-D image cache and locality-sensitive hashing accelerator for high-throughput image fetching and searching. As a result, the proposed super resolution processor generates up to 16× higher resolution images with 3,125 fps throughput and 2.0 nJ/pixel energy efficiency, enabling high-resolution pre-processing for real-time object recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量16×超分辨率处理器,用于实时目标识别SoC
与低分辨率图像相比,高分辨率图像提供了更多的细节,从而提高了物体识别的准确性。然而,对于大型图像传感器来说,更高的分辨率需要昂贵的硬件,或者需要额外的信号处理计算。本文提出了一种用于高分辨率目标识别的高通量超分辨率处理器。为了实现实时目标识别SoC的超分辨率,提出了基于二维图像缓存和位置敏感哈希加速器的算法专用硬件,用于高吞吐量图像提取和搜索。因此,所提出的超分辨率处理器可生成高达16倍的高分辨率图像,吞吐量为3,125 fps,能效为2.0 nJ/pixel,可实现实时目标识别的高分辨率预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 180nm fully-integrated dual-channel reconfigurable receiver for GNSS interoperations A 40 nm LP CMOS self-biased continuous-time comparator with sub-100ps delay at 1.1V & 1.2mW MEMS for automotive and consumer electronics A resistor-based temperature sensor for MEMS frequency references A 13.2% locking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1