Topology based adaptive hybrid multicast routing in mobile ad hoc networks

Gyanappa A. Walikar, R. Biradar, G. D
{"title":"Topology based adaptive hybrid multicast routing in mobile ad hoc networks","authors":"Gyanappa A. Walikar, R. Biradar, G. D","doi":"10.1109/WIECON-ECE.2016.8009111","DOIUrl":null,"url":null,"abstract":"In this paper, we propose topology based adaptive hybrid multicast routing (THMR) mechanism in mobile ad hoc networks. With the help of technique derived from Computational Intelligence (CI) discipline, Topology Change Rate (TCR) is predicted based on link behavior and node mobility for both proactive and reactive routing region in MANETs. We design a Reinforcement Learning (LR) based Q-Learning (QL) algorithm to tune the routing period (RP) in accordance with topology change rate. Simulation evaluation for Packet Delivery Ratio (PDR), and control overhead has been performed in NS-2. We observe that THMR outperforms other standard protocols for performance parameters like Packet Delivery Ratio, and Control overhead.","PeriodicalId":412645,"journal":{"name":"2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2016.8009111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose topology based adaptive hybrid multicast routing (THMR) mechanism in mobile ad hoc networks. With the help of technique derived from Computational Intelligence (CI) discipline, Topology Change Rate (TCR) is predicted based on link behavior and node mobility for both proactive and reactive routing region in MANETs. We design a Reinforcement Learning (LR) based Q-Learning (QL) algorithm to tune the routing period (RP) in accordance with topology change rate. Simulation evaluation for Packet Delivery Ratio (PDR), and control overhead has been performed in NS-2. We observe that THMR outperforms other standard protocols for performance parameters like Packet Delivery Ratio, and Control overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动自组织网络中基于拓扑的自适应混合组播路由
本文提出了移动自组织网络中基于拓扑的自适应混合组播路由机制。借助计算智能(CI)学科的技术,基于链路行为和节点移动性预测了manet中主动和被动路由区域的拓扑变化率(TCR)。我们设计了一种基于强化学习(LR)的Q-Learning (QL)算法来根据拓扑变化率调整路由周期(RP)。在NS-2中对PDR (Packet Delivery Ratio)和控制开销进行了仿真评估。我们观察到THMR在性能参数上优于其他标准协议,如包投递率和控制开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The interference management and cost analysis perspective of femtocell in 4G network Magnetic levitation of solar powered motor with forward-reverse operation: Mathematical design consideration Image hashing by CCQ-CSLBP Fabrication of FeTiO3/SiO2 matrix based sensors for glucose detection in blood Grid connected hybrid solar system with MPPT charge controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1