Using Wavelet Support Vector Machine for Classification of Hyperspectral Images

Mohammad Hossein Banki, A. Shirazi
{"title":"Using Wavelet Support Vector Machine for Classification of Hyperspectral Images","authors":"Mohammad Hossein Banki, A. Shirazi","doi":"10.1109/ICMV.2009.64","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a machine learning algorithm, which has been used recently for classification of hyperspectral images. SVM uses various kernel functions like RBF and polynomial to map the data into higher dimensional space to improve data separability. New kernel functions are used in this paper to classify hyperspectral images which are based on wavelet functions as named Wavelet-kernels. The experimental results indicate that Wavelet-kernels provide better classification accuracy than previous kernels.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machine (SVM) is a machine learning algorithm, which has been used recently for classification of hyperspectral images. SVM uses various kernel functions like RBF and polynomial to map the data into higher dimensional space to improve data separability. New kernel functions are used in this paper to classify hyperspectral images which are based on wavelet functions as named Wavelet-kernels. The experimental results indicate that Wavelet-kernels provide better classification accuracy than previous kernels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波支持向量机的高光谱图像分类
支持向量机(SVM)是一种机器学习算法,近年来被用于高光谱图像的分类。SVM使用RBF、多项式等多种核函数将数据映射到高维空间,提高数据的可分性。本文采用基于小波函数的核函数对高光谱图像进行分类,称为小波核函数。实验结果表明,小波核算法具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1