Recognising moving hand shapes

E. Holden, R. Owens
{"title":"Recognising moving hand shapes","authors":"E. Holden, R. Owens","doi":"10.1109/ICIAP.2003.1234018","DOIUrl":null,"url":null,"abstract":"The paper presents a new hand shape representation technique that characterises the finger-only topology of the hand, by adapting an existing technique from speech signal processing. From a moving hand sequence, the tracking algorithm determines the centre of the largest convex subset of the hand, using a combination of pattern matching and condensation algorithms. A hand shape feature represents the topological formation of the finger-only regions of the hand using a linear predictive coding parameter set called cepstral coefficients. Experimental results demonstrate the effectiveness of detecting the shape feature from motion sequences.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The paper presents a new hand shape representation technique that characterises the finger-only topology of the hand, by adapting an existing technique from speech signal processing. From a moving hand sequence, the tracking algorithm determines the centre of the largest convex subset of the hand, using a combination of pattern matching and condensation algorithms. A hand shape feature represents the topological formation of the finger-only regions of the hand using a linear predictive coding parameter set called cepstral coefficients. Experimental results demonstrate the effectiveness of detecting the shape feature from motion sequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别移动的手部形状
本文提出了一种新的手部形状表示技术,该技术通过采用语音信号处理中的现有技术来表征手部的手指拓扑结构。该跟踪算法结合模式匹配和凝聚算法,从移动的手序列中确定手的最大凸子集的中心。手的形状特征表示的拓扑结构的手指区域的手使用线性预测编码参数集称为倒谱系数。实验结果证明了该方法从运动序列中检测形状特征的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1