{"title":"Interactive Low-Cost Wind Simulation For Cities","authors":"E. Rando, Imanol Muñoz-Pandiella, G. Patow","doi":"10.2312/UDMV.20161421","DOIUrl":null,"url":null,"abstract":"Wind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Urban Data Modelling and Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/UDMV.20161421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.