One of the most promising sustainable energies that can be considered in urban environments is solar energy. A 3D model for solar energy potential on building envelopes based on urban LiDAR data was developed in this study. The developed algorithm can be used to model solar irradiation with high spatio-temporal resolution for roof-, facade-, and ground surfaces simultaneously, while taking into account the surrounding vegetation. Global solar irradiation is obtained for regularly spaced points on building- and ground surfaces with a spatial resolution of 1m2 and a time resolution of 1 hour. The algorithm has been implemented in Matlab and results were generated for two different test areas in the city of Geneva, Switzerland. The results for these specific areas show that, even in a dense urban area, the upper parts of south-east to south-west oriented facades receive 600 to 1000 kWh/m2/year of solar input, which is suitable for active solar installations. The results also show that south oriented facades can get higher solar input during winter months than the low inclined roof surfaces. This demonstrates that, depending on the latitude, facades can have a significant impact on the solar potential of buildings in urban areas, particularly for a sustainable energy planning application.
{"title":"3D Model for Solar Energy Potential on Buildings from Urban LiDAR Data","authors":"A. Bill, Nahid Mohajeri, J. Scartezzini","doi":"10.2312/UDMV.20161420","DOIUrl":"https://doi.org/10.2312/UDMV.20161420","url":null,"abstract":"One of the most promising sustainable energies that can be considered in urban environments is solar energy. A 3D model for solar energy potential on building envelopes based on urban LiDAR data was developed in this study. The developed algorithm can be used to model solar irradiation with high spatio-temporal resolution for roof-, facade-, and ground surfaces simultaneously, while taking into account the surrounding vegetation. Global solar irradiation is obtained for regularly spaced points on building- and ground surfaces with a spatial resolution of 1m2 and a time resolution of 1 hour. The algorithm has been implemented in Matlab and results were generated for two different test areas in the city of Geneva, Switzerland. The results for these specific areas show that, even in a dense urban area, the upper parts of south-east to south-west oriented facades receive 600 to 1000 kWh/m2/year of solar input, which is suitable for active solar installations. The results also show that south oriented facades can get higher solar input during winter months than the low inclined roof surfaces. This demonstrates that, depending on the latitude, facades can have a significant impact on the solar potential of buildings in urban areas, particularly for a sustainable energy planning application.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134223236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Starting from GIS data, which are sampled and often inaccurate, this paper presents a method to reconstruct urban road surfaces respecting important geometric constraints selected from civil engineering. We propose a mathematical road surface model based upon road axes and properties. In addition, we introduce a process to produce a mesh representing the roads and the terrain so that roads and terrain match. Experiments and compelling results prove the efficiency of our framework.
{"title":"Realistic Urban Road Network Modelling From GIS Data","authors":"H. Nguyen, B. Desbenoit, M. Daniel","doi":"10.2312/UDMV.20161414","DOIUrl":"https://doi.org/10.2312/UDMV.20161414","url":null,"abstract":"Starting from GIS data, which are sampled and often inaccurate, this paper presents a method to reconstruct urban road surfaces respecting important geometric constraints selected from civil engineering. We propose a mathematical road surface model based upon road axes and properties. In addition, we introduce a process to produce a mesh representing the roads and the terrain so that roads and terrain match. Experiments and compelling results prove the efficiency of our framework.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116822784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.
{"title":"Interactive Low-Cost Wind Simulation For Cities","authors":"E. Rando, Imanol Muñoz-Pandiella, G. Patow","doi":"10.2312/UDMV.20161421","DOIUrl":"https://doi.org/10.2312/UDMV.20161421","url":null,"abstract":"Wind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"185 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121925906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3D cities reconstruction and visualisation have always been a challenging area. Many software have been developed for constructing, editing and visualising 3D virtual cities. These software that allow the semi-automatic generation of virtual cities whether destined for visualisation, simulation and games have largely reduced the cost and charges of manual generation and sometimes their work outstrips the geometry to reach the semantics at a higher level. However, for faster and better performance, we are focusing on the visualisation and management of real-world data and more precisely geographic data for the web. This data is written in different standards and is largely available to users and cost free. This paper proposes a user intuitive solution based on the quite recent ArcGIS software Application Programming Interface (API) and CityGML (Geography Markup Language) in order to visualise and manage a real interactive editable city.
{"title":"3D Cities Rendering and Visualisation: A Web-Based Solution","authors":"N. E. Haje, J. Jessel, V. Gaildrat, C. Sanza","doi":"10.2312/UDMV.20161426","DOIUrl":"https://doi.org/10.2312/UDMV.20161426","url":null,"abstract":"3D cities reconstruction and visualisation have always been a challenging area. Many software have been developed for constructing, editing and visualising 3D virtual cities. These software that allow the semi-automatic generation of virtual cities whether destined for visualisation, simulation and games have largely reduced the cost and charges of manual generation and sometimes their work outstrips the geometry to reach the semantics at a higher level. However, for faster and better performance, we are focusing on the visualisation and management of real-world data and more precisely geographic data for the web. This data is written in different standards and is largely available to users and cost free. This paper proposes a user intuitive solution based on the quite recent ArcGIS software Application Programming Interface (API) and CityGML (Geography Markup Language) in order to visualise and manage a real interactive editable city.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133948125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3D point clouds describe urban shape at different scales, precisions and resolutions depending on the underlying sensors and acquisition methodology. These factors influence the quality of the data, as well as its representativity. In this paper, we propose a multi-scale workflow to obtain a better description of the captured environment through a multi-scale representative point cloud, presenting an unlimited depth and multisensory data fusion. Our method is shown over a "smart point cloud" data structure and based on data fusion principles retaining higher description and precision on overlapping areas. The concept is illustrated through a use case on the castle of Jehay (Belgium), where aerial LiDAR data, terrestrial laser scanner point cloud and photogrammetry-based reconstruction are combined to obtain a multi-scale data structure.
{"title":"Point Clouds as an Efficient Multiscale Layered Spatial Representation","authors":"Florent Poux, R. Neuville, P. Hallot, R. Billen","doi":"10.2312/UDMV.20161417","DOIUrl":"https://doi.org/10.2312/UDMV.20161417","url":null,"abstract":"3D point clouds describe urban shape at different scales, precisions and resolutions depending on the underlying sensors and acquisition methodology. These factors influence the quality of the data, as well as its representativity. In this paper, we propose a multi-scale workflow to obtain a better description of the captured environment through a multi-scale representative point cloud, presenting an unlimited depth and multisensory data fusion. Our method is shown over a \"smart point cloud\" data structure and based on data fusion principles retaining higher description and precision on overlapping areas. The concept is illustrated through a use case on the castle of Jehay (Belgium), where aerial LiDAR data, terrestrial laser scanner point cloud and photogrammetry-based reconstruction are combined to obtain a multi-scale data structure.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128259686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Gorszczyk, G. Damiand, S. Servigne, A. Diakité, G. Gesquière
3D building models are needed in several professional domains. To provide better results, these models must be errors-free and that is why it is required to have a way to detect and to correct errors. These errors can be geometric, topological or semantic. By using a topological structure called EBM-LCC that allows to model buildings, we create a new tool that allows to detect these three type of errors in 3D city models. The solution we propose is an algorithm that compares two EBM-LCC. This algorithm can be used to compare two different models, for example acquired with two different processes, or resulting from two different acquisition campaigns. It is also an interesting tool to compare and validate algorithms. In this work, we compare an EBM-LCC loaded directly from a CityGML model with an EBM-LCC reconstructed from a soup of polygons only. Then we can use the result of this comparison to outline possible differences or to correct one of the two models by using the information of the other one. This algorithm allowed to automatically detect and correct semantic errors on several models that are currently used by professionals. This shows the interest of EBM-LCC for the city modeling domain as it helps to reach an error-free model.
{"title":"An Automatic Comparison Approach to Detect Errors on 3D City Models","authors":"Benjamin Gorszczyk, G. Damiand, S. Servigne, A. Diakité, G. Gesquière","doi":"10.2312/UDMV.20161416","DOIUrl":"https://doi.org/10.2312/UDMV.20161416","url":null,"abstract":"3D building models are needed in several professional domains. To provide better results, these models must be errors-free and that is why it is required to have a way to detect and to correct errors. These errors can be geometric, topological or semantic. By using a topological structure called EBM-LCC that allows to model buildings, we create a new tool that allows to detect these three type of errors in 3D city models. The solution we propose is an algorithm that compares two EBM-LCC. This algorithm can be used to compare two different models, for example acquired with two different processes, or resulting from two different acquisition campaigns. It is also an interesting tool to compare and validate algorithms. In this work, we compare an EBM-LCC loaded directly from a CityGML model with an EBM-LCC reconstructed from a soup of polygons only. Then we can use the result of this comparison to outline possible differences or to correct one of the two models by using the information of the other one. This algorithm allowed to automatically detect and correct semantic errors on several models that are currently used by professionals. This shows the interest of EBM-LCC for the city modeling domain as it helps to reach an error-free model.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131323273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Procedurally-generated virtual urban worlds typically miss plausible signaling objects on the road network, unless they were manually inserted. We present a solution to the problem of procedurally populating a given urban road network with plausible traffic signs. Our tagged graph approach analyzes the road network using a rule-based reasoning mechanism that represents relevant traffic rules, in order to identify potential sign locations. Eventually, a context-based reduction step helps choose the most suitable candidates, taking into account a variety of real-world rules, and determines their actual place and orientation. We discuss the performance and validation of our approach, and conclude that its generality and flexibility make it a very convenient extension to many procedural urban environment applications.
{"title":"Procedural Generation of Traffic Signs","authors":"F. Taal, Rafael Bidarra","doi":"10.2312/UDMV.20161415","DOIUrl":"https://doi.org/10.2312/UDMV.20161415","url":null,"abstract":"Procedurally-generated virtual urban worlds typically miss plausible signaling objects on the road network, unless they were manually inserted. We present a solution to the problem of procedurally populating a given urban road network with plausible traffic signs. Our tagged graph approach analyzes the road network using a rule-based reasoning mechanism that represents relevant traffic rules, in order to identify potential sign locations. Eventually, a context-based reduction step helps choose the most suitable candidates, taking into account a variety of real-world rules, and determines their actual place and orientation. We discuss the performance and validation of our approach, and conclude that its generality and flexibility make it a very convenient extension to many procedural urban environment applications.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124748024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Fernández, J. Aguerre, B. Beckers, G. Besuievsky
Configuring the optimal shape and position of a building opening, such as windows or skylights, is a crucial task for daylight availability. Computing daylighting requires the use of climate-based data, which involves large data sets and a time-consuming task performed by procedures that in general are not well suited for optimization. In addition, optimal opening shapes may be strongly affected by the urban context, which is rarely taken into account or roughly approximated. In this paper we present a new opening shape optimization technique that considers the urban environment. The exterior contribution is computed through a radiosity approximation. A pinhole-based model is used to model the influence of daylight component on the interior surfaces. Our results show the importance of the exterior influence in the final optimal shapes by computing the same room at different building locations.
{"title":"Optimizing Window Shape for Daylighting: An Urban Context Approach","authors":"Eduardo Fernández, J. Aguerre, B. Beckers, G. Besuievsky","doi":"10.2312/UDMV.20161418","DOIUrl":"https://doi.org/10.2312/UDMV.20161418","url":null,"abstract":"Configuring the optimal shape and position of a building opening, such as windows or skylights, is a crucial task for daylight availability. Computing daylighting requires the use of climate-based data, which involves large data sets and a time-consuming task performed by procedures that in general are not well suited for optimization. In addition, optimal opening shapes may be strongly affected by the urban context, which is rarely taken into account or roughly approximated. \u0000 \u0000In this paper we present a new opening shape optimization technique that considers the urban environment. The exterior contribution is computed through a radiosity approximation. A pinhole-based model is used to model the influence of daylight component on the interior surfaces. Our results show the importance of the exterior influence in the final optimal shapes by computing the same room at different building locations.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115615414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Stéphenne, L. Poelmans, E. Hallot, B. Beaumont, I. Uljee
Cities must develop "Smart" management and planning strategies to mitigate the challenges caused by urban population growth. The SmartPop project proposes a LULC model and dasymetric population density maps to Walloon policy makers for analyzing and simulating future city development and localization of citizens. In this study, the constrained Cellular Automata LULC change model developed for Flanders and the Brussels-Capital Region is applied to the Walloon Region. This paper presents the first outputs from both parts of the project. On the one hand, maps of current and simulated LULC in 2050, resulting from the the first prototype of the LULC model are presented. Secondly, the dasymetric mapping protocol developed for Flanders is calibrated with Walloon data. The resulting population density map is validated with anonymous data of the National Register of Natural Persons. This project makes use of existing tools and data to propose a common spatial planning model for Wallonia, Flanders and Brussels.
{"title":"From Regional LULC Model to Urban Population Density Simulation in Wallonia","authors":"N. Stéphenne, L. Poelmans, E. Hallot, B. Beaumont, I. Uljee","doi":"10.2312/UDMV.20161422","DOIUrl":"https://doi.org/10.2312/UDMV.20161422","url":null,"abstract":"Cities must develop \"Smart\" management and planning strategies to mitigate the challenges caused by urban population growth. The SmartPop project proposes a LULC model and dasymetric population density maps to Walloon policy makers for analyzing and simulating future city development and localization of citizens. In this study, the constrained Cellular Automata LULC change model developed for Flanders and the Brussels-Capital Region is applied to the Walloon Region. This paper presents the first outputs from both parts of the project. On the one hand, maps of current and simulated LULC in 2050, resulting from the the first prototype of the LULC model are presented. Secondly, the dasymetric mapping protocol developed for Flanders is calibrated with Walloon data. The resulting population density map is validated with anonymous data of the National Register of Natural Persons. This project makes use of existing tools and data to propose a common spatial planning model for Wallonia, Flanders and Brussels.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116012584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Robert Menzel, Sven Middelberg, Philip Trettner, Bastian Jonas, L. Kobbelt
We present a city reconstruction and visualization framework that integrates geometric models reconstructed with a range of different techniques. The framework generates the vast majority of buildings procedurally, which yields plausible visualizations for structurally simple buildings, e.g. residential buildings. For structurally complex landmarks, e.g. churches, a procedural approach does not achieve satisfactory visual fidelity. Thus, we also employ image-based techniques to reconstruct the latter in a more realistic, recognizable way. As the manual acquisition of data required for the procedural and image-based reconstructions is practically infeasible for whole cities, we rely on publicly available data as well as crowd sourcing projects. This enables our framework to render views from cities without any dedicated data acquisition as long as there are sufficient public data sources available. To obtain a more lively impression of a city, we also visualize dynamic features like weather conditions and traffic based on publicly available real-time data.
{"title":"City Reconstruction and Visualization from Public Data Sources","authors":"Jan Robert Menzel, Sven Middelberg, Philip Trettner, Bastian Jonas, L. Kobbelt","doi":"10.2312/UDMV.20161424","DOIUrl":"https://doi.org/10.2312/UDMV.20161424","url":null,"abstract":"We present a city reconstruction and visualization framework that integrates geometric models reconstructed with a range of different techniques. The framework generates the vast majority of buildings procedurally, which yields plausible visualizations for structurally simple buildings, e.g. residential buildings. For structurally complex landmarks, e.g. churches, a procedural approach does not achieve satisfactory visual fidelity. Thus, we also employ image-based techniques to reconstruct the latter in a more realistic, recognizable way. As the manual acquisition of data required for the procedural and image-based reconstructions is practically infeasible for whole cities, we rely on publicly available data as well as crowd sourcing projects. This enables our framework to render views from cities without any dedicated data acquisition as long as there are sufficient public data sources available. To obtain a more lively impression of a city, we also visualize dynamic features like weather conditions and traffic based on publicly available real-time data.","PeriodicalId":161750,"journal":{"name":"Eurographics Workshop on Urban Data Modelling and Visualisation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123636476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}