Uncertain geometry with dependencies

Yonatan Myers, Leo Joskowicz
{"title":"Uncertain geometry with dependencies","authors":"Yonatan Myers, Leo Joskowicz","doi":"10.1145/1839778.1839801","DOIUrl":null,"url":null,"abstract":"Classical computational geometry algorithms handle geometric constructs whose shapes and locations are exact. However, many real-world applications require computing with geometric uncertainties, which are often coupled and mutually dependent. Existing uncertainty models cannot be used to handle dependencies among objects resulting in overestimation of the mutual errors. We have recently developed the Linear Parametric Geometric Uncertainty Model (LPGUM), a general and computationally efficient worst-case first-order linear approximation of geometric uncertainty that supports dependencies among uncertainties. In this paper, we present the properties of the uncertainty zones of a point and a line, and offer efficient algorithms to compute them. We also describe new efficient algorithms to handle relative position queries, e.g., the classification of an uncertain point with respect to an uncertain line. We show that, in all cases, the overhead of computing with dependent uncertainties is low.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Classical computational geometry algorithms handle geometric constructs whose shapes and locations are exact. However, many real-world applications require computing with geometric uncertainties, which are often coupled and mutually dependent. Existing uncertainty models cannot be used to handle dependencies among objects resulting in overestimation of the mutual errors. We have recently developed the Linear Parametric Geometric Uncertainty Model (LPGUM), a general and computationally efficient worst-case first-order linear approximation of geometric uncertainty that supports dependencies among uncertainties. In this paper, we present the properties of the uncertainty zones of a point and a line, and offer efficient algorithms to compute them. We also describe new efficient algorithms to handle relative position queries, e.g., the classification of an uncertain point with respect to an uncertain line. We show that, in all cases, the overhead of computing with dependent uncertainties is low.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有相关性的不确定几何
经典计算几何算法处理形状和位置精确的几何结构。然而,许多实际应用需要计算几何不确定性,这些不确定性通常是耦合和相互依赖的。现有的不确定性模型不能用于处理对象之间的依赖关系,从而导致对相互误差的高估。我们最近开发了线性参数几何不确定性模型(LPGUM),这是一种通用且计算效率高的最坏情况下几何不确定性的一阶线性近似,支持不确定性之间的依赖性。本文给出了点和线的不确定区域的性质,并给出了计算不确定区域的有效算法。我们还描述了处理相对位置查询的新有效算法,例如,关于不确定线的不确定点的分类。我们表明,在所有情况下,计算相关不确定性的开销都很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Minkowski sums of polyhedra via controlled linear perturbation Adaptive surface reconstruction based on implicit PHT-splines Hexahedral shell mesh construction via volumetric polycube map Hierarchical surface fairing with constraints Accurate moment computation using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1