Ni Li, Paolo Arguelles, Kevin Chaput, Stephen L. Kenan, Salla Kim, Donglin Li, Yosuar Vazquez, Dennis Viveros, T. Nye, K. Salinas
{"title":"A Novel Approach for Satellite Attitude Control by Using Solar Sailing","authors":"Ni Li, Paolo Arguelles, Kevin Chaput, Stephen L. Kenan, Salla Kim, Donglin Li, Yosuar Vazquez, Dennis Viveros, T. Nye, K. Salinas","doi":"10.1115/IMECE2018-88311","DOIUrl":null,"url":null,"abstract":"Solar sailing is a new satellite propulsion technology using radiation pressure exerted by sunlight on a large mirrored surface. Since it does not need propellants, it is increasingly being considered by both the European Space Agency and the National Aeronautics and Space Administration for future science missions. An attitude control system is essential for a sail craft to maintain a desired orientation. IKAROS, launched in 2010, practically proved the possibility of using a solar sail as a propulsion system. However, it also showed the current sail orientation system could change the attitude very slowly, about 1 degree per day. In contrast to the existing single solar sail design, a new distributed four-sail configuration is proposed in this paper and the coordinated motion of the four sails is used to control the attitude pointing of a satellite. The feasibility and efficiency of this proposed design were assessed and concluded that it is possible to steer a CubeSat up to 1 degree in 60 seconds for either the roll or pitch axes.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar sailing is a new satellite propulsion technology using radiation pressure exerted by sunlight on a large mirrored surface. Since it does not need propellants, it is increasingly being considered by both the European Space Agency and the National Aeronautics and Space Administration for future science missions. An attitude control system is essential for a sail craft to maintain a desired orientation. IKAROS, launched in 2010, practically proved the possibility of using a solar sail as a propulsion system. However, it also showed the current sail orientation system could change the attitude very slowly, about 1 degree per day. In contrast to the existing single solar sail design, a new distributed four-sail configuration is proposed in this paper and the coordinated motion of the four sails is used to control the attitude pointing of a satellite. The feasibility and efficiency of this proposed design were assessed and concluded that it is possible to steer a CubeSat up to 1 degree in 60 seconds for either the roll or pitch axes.