{"title":"Synthesis of scalable micro-spheres by Plateau-Rayleigh instability","authors":"G. Fan, Bingjian Zhang, Chuangui Liu, Shan Tang, Jian Yang, Zhi-jun Ma, Xianting Ding","doi":"10.1109/NEMS.2016.7758192","DOIUrl":null,"url":null,"abstract":"In the field of the fabrication of micro- and nano-spheres, the phenomenon of Plateau-Rayleigh instability has drawn more and more attention. This surface tension-driven instability in two immiscible fluids can be used to generate uniformly size micro- and nano-spheres by imposing an external mechanical excitation. In this article, we mainly adopt numerical simulation method to study the effects of wavelength, viscosity and surface tension on Plateau-Rayleigh instability. In addition, a micro-spheres generation system based on controlling the breakup process of the co-flowing jet is studied. The numerical results show that the current method can efficiently control the size of the micro-spheres from a variety of fluids. Also, the effects of amplitude and frequency of the excitation during the fabrication process on the size of micro-spheres are investigated.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of the fabrication of micro- and nano-spheres, the phenomenon of Plateau-Rayleigh instability has drawn more and more attention. This surface tension-driven instability in two immiscible fluids can be used to generate uniformly size micro- and nano-spheres by imposing an external mechanical excitation. In this article, we mainly adopt numerical simulation method to study the effects of wavelength, viscosity and surface tension on Plateau-Rayleigh instability. In addition, a micro-spheres generation system based on controlling the breakup process of the co-flowing jet is studied. The numerical results show that the current method can efficiently control the size of the micro-spheres from a variety of fluids. Also, the effects of amplitude and frequency of the excitation during the fabrication process on the size of micro-spheres are investigated.