Detailed Thermal Design and Control of an Observation Satellite in Low Earth Orbit

Hilmi Sundu, N. Doner
{"title":"Detailed Thermal Design and Control of an Observation Satellite in Low Earth Orbit","authors":"Hilmi Sundu, N. Doner","doi":"10.26701/ems.730201","DOIUrl":null,"url":null,"abstract":"The thermal environment in space has challenging conditions in which include vacuum, low pressure, atomic oxygen, extremely hot and cold. Satellites consist of electronic equipments and these equipments should be maintained at a certain temperature range during the operation period. Therefore, thermal design and control of observation satellites at Low Earth Orbit in space are considerably important. In our study, we studied thermal design and analysis of a Low Earth Orbit (LEO) observation satellites. A satellite was designed and modeled with Systema-Thermica v.4.8.P1 using Monte-Carlo Ray Tracing Method. The analyses were performed for two extreme scenarios: i) the worst hot, and ii) the worst cold situations. The areas, temperatures, and locations of the radiators on the satellite panels were analyzed by the considered extreme scenarios. The powers and operating conditions of the heaters were evaluated according to the worst cold scenario. It was seen that the temperatures of the electronic equipments on the satellite are to be in the optimum temperature range during the observation process.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mechanical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26701/ems.730201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The thermal environment in space has challenging conditions in which include vacuum, low pressure, atomic oxygen, extremely hot and cold. Satellites consist of electronic equipments and these equipments should be maintained at a certain temperature range during the operation period. Therefore, thermal design and control of observation satellites at Low Earth Orbit in space are considerably important. In our study, we studied thermal design and analysis of a Low Earth Orbit (LEO) observation satellites. A satellite was designed and modeled with Systema-Thermica v.4.8.P1 using Monte-Carlo Ray Tracing Method. The analyses were performed for two extreme scenarios: i) the worst hot, and ii) the worst cold situations. The areas, temperatures, and locations of the radiators on the satellite panels were analyzed by the considered extreme scenarios. The powers and operating conditions of the heaters were evaluated according to the worst cold scenario. It was seen that the temperatures of the electronic equipments on the satellite are to be in the optimum temperature range during the observation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近地轨道观测卫星的详细热设计与控制
太空中的热环境具有挑战性,包括真空、低压、原子氧、极热和极冷。卫星由电子设备组成,这些设备在运行期间应保持在一定的温度范围内。因此,空间近地轨道观测卫星的热设计与控制十分重要。在本研究中,我们研究了低地球轨道(LEO)观测卫星的热设计和分析。利用Systema-Thermica v.4.8软件设计并建模了一颗卫星。P1采用蒙特卡罗光线追踪法。对两种极端情况进行了分析:i)最炎热的情况,ii)最寒冷的情况。根据考虑的极端情况,对卫星面板上散热器的面积、温度和位置进行了分析。根据最坏的冷情景对加热器的功率和运行条件进行了评估。结果表明,在观测过程中,卫星上的电子设备温度处于最佳温度范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mutual examination of corrosion and wear resistance of sandblasting and etching surface treatments applied to AISI 316L stainless steel An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks Effect of chemical oxidation process on adhesive performance in two component adhesive with nano particle and nano fiber additives Experimental investigation and optimization of the effect garnet vibratory tumbling as a post-process on the surface quality of 3D printed PLA parts The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1