Since AISI 316L stainless steel has excellent mechanical qualities and resistance to corrosion, it is widely used in many different industries. Surface treatments like etching and sandblasting are frequently used to improve the surface properties for certain uses. It is still difficult to comprehend how these treatments affect the material’s resistance to corrosion and wear, though. In this work, we methodically examine how sandblasting and etching affect AISI 316L stainless steel’s resistance to corrosion and wear. We assess the morphological, chemical, and performance changes brought about by these treatments using X-ray diffraction, scanning electron microscopy, microhardness testing, and tribological analysis. Our findings show that the surface morphology and chemistry are dramatically changed by both treatments, which has an impact on the corrosion and wear behavior of the material. The best wear resistance was obtained from the sandblasted sample (0.64 x10−3 mm3/Nm) and the best corrosion resistance was obtained from the untreated sample. The optimization of surface treatment techniques for stainless steel alloys in many industrial applications is facilitated by these findings.
{"title":"Mutual examination of corrosion and wear resistance of sandblasting and etching surface treatments applied to AISI 316L stainless steel","authors":"M. Acar","doi":"10.26701/ems.1470604","DOIUrl":"https://doi.org/10.26701/ems.1470604","url":null,"abstract":"Since AISI 316L stainless steel has excellent mechanical qualities and resistance to corrosion, it is widely used in many different industries. Surface treatments like etching and sandblasting are frequently used to improve the surface properties for certain uses. It is still difficult to comprehend how these treatments affect the material’s resistance to corrosion and wear, though. In this work, we methodically examine how sandblasting and etching affect AISI 316L stainless steel’s resistance to corrosion and wear. We assess the morphological, chemical, and performance changes brought about by these treatments using X-ray diffraction, scanning electron microscopy, microhardness testing, and tribological analysis. Our findings show that the surface morphology and chemistry are dramatically changed by both treatments, which has an impact on the corrosion and wear behavior of the material. The best wear resistance was obtained from the sandblasted sample (0.64 x10−3 mm3/Nm) and the best corrosion resistance was obtained from the untreated sample. The optimization of surface treatment techniques for stainless steel alloys in many industrial applications is facilitated by these findings.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"42 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the presented numerical study, the effect of the use of mono and hybrid (CuO/Water at 2% volume concentration and CuO + Fe/Water (1% CuO + 1% Fe)) type nanofluid in heat sinks designed in new geometric structures used to increase the processor cooling performance was investigated. The geometries used are circular, triangular, square, hexagonal, square, and hexagonal, and their perforated structures and their effects on a total of eight geometries were analyzed. In addition to these, the rate of improving the temperature distribution and heat transfer in the heat sink, i.e., the Performance Evaluation Criterion (PEC), was also examined. According to the results obtained, the lowest thermal resistance value is seen in the circular cross-section with Rth = 0.289 K/W, while the highest thermal, i.e., cooling performance is seen in the triangular perforated structure with Rth = 0.63 K/W and at the lowest pressure inlet condition. In terms of temperature distribution, the most uniform distribution was obtained between 311.82 and 308.98 K in the circular section. The most interesting result in terms of the results was the PEC = 1.4 for the triangular hole structure in the heat transfer improvement performance. The main reason for this is that the range of the temperature distribution shown is very high (319–311.5K).
{"title":"An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks","authors":"T. Göksu","doi":"10.26701/ems.1466806","DOIUrl":"https://doi.org/10.26701/ems.1466806","url":null,"abstract":"In the presented numerical study, the effect of the use of mono and hybrid (CuO/Water at 2% volume concentration and CuO + Fe/Water (1% CuO + 1% Fe)) type nanofluid in heat sinks designed in new geometric structures used to increase the processor cooling performance was investigated. The geometries used are circular, triangular, square, hexagonal, square, and hexagonal, and their perforated structures and their effects on a total of eight geometries were analyzed. In addition to these, the rate of improving the temperature distribution and heat transfer in the heat sink, i.e., the Performance Evaluation Criterion (PEC), was also examined. According to the results obtained, the lowest thermal resistance value is seen in the circular cross-section with Rth = 0.289 K/W, while the highest thermal, i.e., cooling performance is seen in the triangular perforated structure with Rth = 0.63 K/W and at the lowest pressure inlet condition. In terms of temperature distribution, the most uniform distribution was obtained between 311.82 and 308.98 K in the circular section. The most interesting result in terms of the results was the PEC = 1.4 for the triangular hole structure in the heat transfer improvement performance. The main reason for this is that the range of the temperature distribution shown is very high (319–311.5K).","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, chemically surface-treated nanoparticles and nanofibers were added to the adhesive to improve the performance of the two-component structural adhesive. In the study, DP460 structural adhesive was used as adhesive, functionalized Multi Walled Carbon Nanotubes (MWCNT-COOH) with COOH and carbon fiber (CF) chemically surface treated with HNO3 solution were used as nanostructures. In the experimental study, eight different parameters were investigated as the nanostructure was (i) undoped, (ii) 1 wt% MWCNT-COOH added, (iii) 1wt%. untreated CF added, (iv) 0.5 wt% chemically treated CF added, (v) 1 wt% chemically treated CF added, (vi) 2 wt% chemically treated CF added, (vii) 0.5 wt% MWCNT-COOH and 0.5 wt% chemically treated CF added, and (viii) 1 wt% MWCNT-COOH and 1wt% chemically treated CF added. According to the results of the study, adding nanoparticles to the adhesive increases the performance of the adhesive by about 12%, while adding nanofibers increases the performance of the adhesive by about 18%. In addition, increasing the inertness and wettability of nanofibers by chemical treatment, as well as the use of nanoparticles and fibers together, significantly increases the performance of the adhesive. In addition, the obtained results were supported by fourier transform infrared spectroscopy (FT-IR) analysis and scanning electron microscopic (SEM) analysis.
{"title":"Effect of chemical oxidation process on adhesive performance in two component adhesive with nano particle and nano fiber additives","authors":"İclal AVİNÇ AKPINAR","doi":"10.26701/ems.1385552","DOIUrl":"https://doi.org/10.26701/ems.1385552","url":null,"abstract":"In the present study, chemically surface-treated nanoparticles and nanofibers were added to the adhesive to improve the performance of the two-component structural adhesive. In the study, DP460 structural adhesive was used as adhesive, functionalized Multi Walled Carbon Nanotubes (MWCNT-COOH) with COOH and carbon fiber (CF) chemically surface treated with HNO3 solution were used as nanostructures. In the experimental study, eight different parameters were investigated as the nanostructure was (i) undoped, (ii) 1 wt% MWCNT-COOH added, (iii) 1wt%. untreated CF added, (iv) 0.5 wt% chemically treated CF added, (v) 1 wt% chemically treated CF added, (vi) 2 wt% chemically treated CF added, (vii) 0.5 wt% MWCNT-COOH and 0.5 wt% chemically treated CF added, and (viii) 1 wt% MWCNT-COOH and 1wt% chemically treated CF added. According to the results of the study, adding nanoparticles to the adhesive increases the performance of the adhesive by about 12%, while adding nanofibers increases the performance of the adhesive by about 18%. In addition, increasing the inertness and wettability of nanofibers by chemical treatment, as well as the use of nanoparticles and fibers together, significantly increases the performance of the adhesive. In addition, the obtained results were supported by fourier transform infrared spectroscopy (FT-IR) analysis and scanning electron microscopic (SEM) analysis.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"43 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140455081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The method known as additive manufacturing causes high surface roughness between layers depending on the technique used at the end of the product development process. This can be an important problem in three-dimensional (3D) manufacturing depending on the usage area. To solve this problem, in this experimental study, the effect of vibratory tumbling (VT) on surface roughness in 3D printing was investigated using garnet abrasive particles. Optimization with the best parameters was also performed and the results were analyzed. This experimental study investigated the effect of vibratory tumbling on surface roughness in 3D printing produced from Polylactic acid (PLA) material using garnet abrasive particles. The surface roughness (Ra) values were measured at different vibration durations for each mesh size. The results provide insights into the impact of vibratory tumbling on surface roughness in 3D-printed parts. The study involved subjecting the printed parts to vibratory tumbling using garnet abrasive particles of various mesh sizes (80, 90, 100, 120, 150, 180, and 220 mesh). Surface roughness measurements were taken at different vibration durations (2, 4, 6, 8, 10, and 12 hours) for each mesh size. A surface roughness measuring device was used to obtain the roughness values. The findings reveal that vibratory tumbling with garnet abrasive particles effectively reduces surface roughness in 3D printed parts. As the vibration duration increased, smoother surfaces were achieved. The data collected for each mesh size and vibration duration offer valuable insights into the relationship between vibratory tumbling and surface roughness in 3D printing. The surface roughness of the printed samples was reduced by 60% on average by using the optimum values after post-process. This research highlights the potential of vibratory tumbling as a viable method for improving surface roughness in 3D printing applications. Emphasis is placed on optimizing the vibration duration and selecting the appropriate mesh size to achieve the desired surface quality. Overall, this study contributes to our understanding of the effect of vibratory tumbling on surface roughness in 3D printing and provides considerable insights for enhancing surface quality in additive manufacturing processes.
增材制造法在产品开发过程的最后阶段会导致层间表面粗糙度增高,具体取决于所使用的技术。这可能是三维(3D)制造中的一个重要问题,具体取决于使用领域。为了解决这个问题,在本实验研究中,使用石榴石磨料颗粒研究了振动翻滚(VT)对三维打印表面粗糙度的影响。此外,还对最佳参数进行了优化,并对结果进行了分析。本实验研究使用石榴石磨料颗粒,调查了振动滚揉对聚乳酸(PLA)材料 3D 打印表面粗糙度的影响。在不同的振动持续时间下测量了每种网目尺寸的表面粗糙度 (Ra) 值。研究结果有助于深入了解振动滚揉对 3D 打印部件表面粗糙度的影响。研究使用不同目数(80、90、100、120、150、180 和 220 目)的石榴石磨料颗粒对打印部件进行振动滚揉。在不同的振动持续时间(2、4、6、8、10 和 12 小时)下,对每种目数的表面粗糙度进行测量。表面粗糙度测量仪用于获得粗糙度值。研究结果表明,使用石榴石磨料颗粒进行振动滚揉可有效降低 3D 打印部件的表面粗糙度。随着振动持续时间的增加,表面变得更加光滑。针对每种网目尺寸和振动持续时间收集的数据为了解三维打印中振动滚揉与表面粗糙度之间的关系提供了宝贵的信息。通过使用后处理后的最佳值,打印样品的表面粗糙度平均降低了 60%。这项研究凸显了振动滚揉作为一种可行方法在三维打印应用中改善表面粗糙度的潜力。重点在于优化振动持续时间和选择合适的网目尺寸,以达到所需的表面质量。总之,这项研究有助于我们了解振动滚揉对三维打印中表面粗糙度的影响,并为提高增材制造过程中的表面质量提供了重要启示。
{"title":"Experimental investigation and optimization of the effect garnet vibratory tumbling as a post-process on the surface quality of 3D printed PLA parts","authors":"F. Kartal, Arslan Kaptan","doi":"10.26701/ems.1339622","DOIUrl":"https://doi.org/10.26701/ems.1339622","url":null,"abstract":"The method known as additive manufacturing causes high surface roughness between layers depending on the technique used at the end of the product development process. This can be an important problem in three-dimensional (3D) manufacturing depending on the usage area. To solve this problem, in this experimental study, the effect of vibratory tumbling (VT) on surface roughness in 3D printing was investigated using garnet abrasive particles. Optimization with the best parameters was also performed and the results were analyzed. This experimental study investigated the effect of vibratory tumbling on surface roughness in 3D printing produced from Polylactic acid (PLA) material using garnet abrasive particles. The surface roughness (Ra) values were measured at different vibration durations for each mesh size. The results provide insights into the impact of vibratory tumbling on surface roughness in 3D-printed parts. The study involved subjecting the printed parts to vibratory tumbling using garnet abrasive particles of various mesh sizes (80, 90, 100, 120, 150, 180, and 220 mesh). Surface roughness measurements were taken at different vibration durations (2, 4, 6, 8, 10, and 12 hours) for each mesh size. A surface roughness measuring device was used to obtain the roughness values. The findings reveal that vibratory tumbling with garnet abrasive particles effectively reduces surface roughness in 3D printed parts. As the vibration duration increased, smoother surfaces were achieved. The data collected for each mesh size and vibration duration offer valuable insights into the relationship between vibratory tumbling and surface roughness in 3D printing. The surface roughness of the printed samples was reduced by 60% on average by using the optimum values after post-process. This research highlights the potential of vibratory tumbling as a viable method for improving surface roughness in 3D printing applications. Emphasis is placed on optimizing the vibration duration and selecting the appropriate mesh size to achieve the desired surface quality. Overall, this study contributes to our understanding of the effect of vibratory tumbling on surface roughness in 3D printing and provides considerable insights for enhancing surface quality in additive manufacturing processes.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"24 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140498914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3D printing is a rapidly advancing method in digital manufacturing techniques and produces objects in layers. Fused Deposition Modelling (FDM) is a 3D printing technology where the material is melted in a hot nozzle and then placed on a build platform to create a prototype layer by layer. In this study, the effects of different raster angles (0°, 45°, 90°, 45°/-45°, 0°/90°) on dimensional accuracy for PLA, PETG and ABS materials produced using FDM were investigated. The results show that PETG generally shows higher dimensional deviations compared to PLA and ABS, and samples with a scan angle of 90° generally have lower deviation percentages than other angles. Width deviations (approximately 1.5% on average) were lower than thickness deviations (approximately 9.5% on average). Analysis of the cross-sectional areas shows that all samples are above the theoretical area (41.6 mm2). PETG samples with a scan angle of 45°/-45° exhibit the largest cross-sectional area (46.78 mm2), while ABS samples with a scan angle of 90° exhibit the smallest (45.46 mm2). This study is important to understand the impact of material selection and raster angle on dimensional accuracy, and it is recommended to account for cross-sectional deviations and calculate the stress based on the actual cross-sectional area to achieve more accurate results in applications requiring precise measurements. These data offer valuable information for those interested in 3D printing and its professionals and can lead to further research in this field, so that printing techniques can be further developed and product quality can be improved.
{"title":"The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens","authors":"Oğuz Tunçel","doi":"10.26701/ems.1392387","DOIUrl":"https://doi.org/10.26701/ems.1392387","url":null,"abstract":"3D printing is a rapidly advancing method in digital manufacturing techniques and produces objects in layers. Fused Deposition Modelling (FDM) is a 3D printing technology where the material is melted in a hot nozzle and then placed on a build platform to create a prototype layer by layer. In this study, the effects of different raster angles (0°, 45°, 90°, 45°/-45°, 0°/90°) on dimensional accuracy for PLA, PETG and ABS materials produced using FDM were investigated. The results show that PETG generally shows higher dimensional deviations compared to PLA and ABS, and samples with a scan angle of 90° generally have lower deviation percentages than other angles. Width deviations (approximately 1.5% on average) were lower than thickness deviations (approximately 9.5% on average). Analysis of the cross-sectional areas shows that all samples are above the theoretical area (41.6 mm2). PETG samples with a scan angle of 45°/-45° exhibit the largest cross-sectional area (46.78 mm2), while ABS samples with a scan angle of 90° exhibit the smallest (45.46 mm2). This study is important to understand the impact of material selection and raster angle on dimensional accuracy, and it is recommended to account for cross-sectional deviations and calculate the stress based on the actual cross-sectional area to achieve more accurate results in applications requiring precise measurements. These data offer valuable information for those interested in 3D printing and its professionals and can lead to further research in this field, so that printing techniques can be further developed and product quality can be improved.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"261 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140500041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the heating and cooling needs of an airplane hangar by integrating a heat pump system into bored piles were investigated. For this purpose, U-type pile heat exchangers were installed inside the piles. 600 bored piles were integrated with heat exchangers depending on the heating requirements of the hangar. Energy calculations were performed for a single pile, and the total amount of energy that could be extracted from the ground was determined. The main goal is to supply cooling and heating for the hangar throughout the year without the use of any additional conventional system. Thus, cost-analysis results for both the heat pump and traditional system using levelized cost method were presented. The study results showed that the annual operating cost (COM)PW, total operating cost (IOM)PW, equivalent annual operating cost (COM), and total annual cost (CT) for the present condition reduced by nearly 38.5%, 35%, 35%, and 34% against the conventional system, respectively. The simple payback period was calculated as 1.1 years. Finally, it was seen that using the energy piles can provide the heating and cooling requirements of the hangar throughout the year without any additional conventional system.
{"title":"Investigation of an energy pile application and its economic analysis","authors":"Sertaç Coşman, O. Kincay","doi":"10.26701/ems.1404959","DOIUrl":"https://doi.org/10.26701/ems.1404959","url":null,"abstract":"In this study, the heating and cooling needs of an airplane hangar by integrating a heat pump system into bored piles were investigated. For this purpose, U-type pile heat exchangers were installed inside the piles. 600 bored piles were integrated with heat exchangers depending on the heating requirements of the hangar. Energy calculations were performed for a single pile, and the total amount of energy that could be extracted from the ground was determined. The main goal is to supply cooling and heating for the hangar throughout the year without the use of any additional conventional system. Thus, cost-analysis results for both the heat pump and traditional system using levelized cost method were presented. The study results showed that the annual operating cost (COM)PW, total operating cost (IOM)PW, equivalent annual operating cost (COM), and total annual cost (CT) for the present condition reduced by nearly 38.5%, 35%, 35%, and 34% against the conventional system, respectively. The simple payback period was calculated as 1.1 years. Finally, it was seen that using the energy piles can provide the heating and cooling requirements of the hangar throughout the year without any additional conventional system.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"146 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140501117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The results of the parametric analysis of the cylinder-cylinder intersections in pressure vessels, performed in both elastic and plastic regions, are discussed in this study. Besides, the outcomes that contribute to the development of classical solutions in the literature are addressed as design curves depending on stress concentration factors (SCF). To begin with, the maximum stresses for cylinder-cylinder connections were calculated by finite element analysis and SCF values were obtained. In these calculations, external local loads acting on the nozzle centre and internal pressure are the main variables for loading conditions. Following that, different parametric approaches and loading conditions are presented to develop design curves for cylinder/cylinder connections by changing the main geometric parameters, such as cylinder and nozzle radii, and their thicknesses. A new approach is presented using these new curves thus allowing industrial designers to calculate maximum nozzle stresses without the need to undertake a thorough finite element analysis.
{"title":"Stress concentration factor based design curves for cylinder-cylinder connections in pressure vessels","authors":"Murat Bozkurt, David Nash","doi":"10.26701/ems.1356968","DOIUrl":"https://doi.org/10.26701/ems.1356968","url":null,"abstract":"The results of the parametric analysis of the cylinder-cylinder intersections in pressure vessels, performed in both elastic and plastic regions, are discussed in this study. Besides, the outcomes that contribute to the development of classical solutions in the literature are addressed as design curves depending on stress concentration factors (SCF). To begin with, the maximum stresses for cylinder-cylinder connections were calculated by finite element analysis and SCF values were obtained. In these calculations, external local loads acting on the nozzle centre and internal pressure are the main variables for loading conditions. Following that, different parametric approaches and loading conditions are presented to develop design curves for cylinder/cylinder connections by changing the main geometric parameters, such as cylinder and nozzle radii, and their thicknesses. A new approach is presented using these new curves thus allowing industrial designers to calculate maximum nozzle stresses without the need to undertake a thorough finite element analysis.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"86 1‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, significant investments have been made for Solar Power Plants (SPP) plants in many countries. The installation costs of SPP plants are quite high. This situation increases the amortization period of investments. Lowering these costs during the installation phase will pave the way for more investments. One of the most important cost items of Solar Power Plants (SPP) is steel construction costs. In this study, it is aimed to reduce the cost by designing the best performance product by reducing the weight of C profiles, one of the steel constructions used during the installation of solar panels, with shape and topology methods. The results obtained show that shape and topological optimization can provide significant gains in terms of cost.
近年来,许多国家对太阳能发电厂(SPP)进行了大量投资。太阳能发电站的安装成本相当高。这种情况延长了投资的摊销期。在安装阶段降低这些成本将为更多的投资铺平道路。太阳能发电站(SPP)最重要的成本项目之一是钢结构成本。本研究旨在通过形状和拓扑方法设计性能最佳的产品,减轻太阳能电池板安装过程中使用的钢结构之一 C 型材的重量,从而降低成本。研究结果表明,形状和拓扑优化可以显著降低成本。
{"title":"Structural and topology optimization of steel construction profiles in solar energy systems","authors":"Cengiz Bayram, E. Köse","doi":"10.26701/ems.1388159","DOIUrl":"https://doi.org/10.26701/ems.1388159","url":null,"abstract":"In recent years, significant investments have been made for Solar Power Plants (SPP) plants in many countries. The installation costs of SPP plants are quite high. This situation increases the amortization period of investments. Lowering these costs during the installation phase will pave the way for more investments. One of the most important cost items of Solar Power Plants (SPP) is steel construction costs. In this study, it is aimed to reduce the cost by designing the best performance product by reducing the weight of C profiles, one of the steel constructions used during the installation of solar panels, with shape and topology methods. The results obtained show that shape and topological optimization can provide significant gains in terms of cost.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"93 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139171060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, Perform 700 steel sheets with 5-mm thickness were welded with single pulse MIG welding method with different welding currents and welding speeds. The welded specimens were subjected to tensile tests, hardness measurements and microstructural observations. According to the results, the heat input has an important role in tensile strength of the joint. The maximum tensile strength was obtained as 594.75 MPa at 140A welding current and 450 mm/min welding speed. The tensile specimens were always separated between fusion zone and heat affected zone. The heat affected zones have exhibited tempered martensitic structure. The tempering effect have increased the sizes of the martensitic structure; therefore, the hardness was considerably increased. However, the fusion zone, which was consisted of bainitic structure inside the ferrite matrix, was exhibited soft and ductile behavior. The boundary of soft fusion zone and hard heat affected zone formed the weakest point through the joint.
{"title":"Single-pulse MIG welded Perform 700 steel joints with various welding parameters","authors":"Fatih Özen","doi":"10.26701/ems.1387954","DOIUrl":"https://doi.org/10.26701/ems.1387954","url":null,"abstract":"In this work, Perform 700 steel sheets with 5-mm thickness were welded with single pulse MIG welding method with different welding currents and welding speeds. The welded specimens were subjected to tensile tests, hardness measurements and microstructural observations. According to the results, the heat input has an important role in tensile strength of the joint. The maximum tensile strength was obtained as 594.75 MPa at 140A welding current and 450 mm/min welding speed. The tensile specimens were always separated between fusion zone and heat affected zone. The heat affected zones have exhibited tempered martensitic structure. The tempering effect have increased the sizes of the martensitic structure; therefore, the hardness was considerably increased. However, the fusion zone, which was consisted of bainitic structure inside the ferrite matrix, was exhibited soft and ductile behavior. The boundary of soft fusion zone and hard heat affected zone formed the weakest point through the joint.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of alcohol-derived fuels produced from renewable resources is an effective method to reduce dependence on petroleum. However, alcohols can improve the combustion process by changing the fuel chemistry. In this way, performance, emission, mechanical vibration and noise values can be improved in diesel engines. In this study; New fuel forms (D90E10, D90IB10, D80E10IB10, D77.5E10IB10DEE2.5, 75E10IB10DEE5) were formed by mixing ethanol, isobutanol and diethyl ether alcohols with diesel fuel in certain proportions. The fuels generated was used in experiments. The studies were conducted with four different loads (%25, 50, 75, and 100) at a constant speed (2800 rpm). The optimum fuel mixture was determined by examining the engine performance, exhaust emissions, mechanical vibrations and noise data obtained in the experiments. When the most important data output of the test results is evaluated; In tests with D75E10IB10DEE5 fuel, it was determined that smoke emissions were reduced by 24.6% and mechanical vibrations by 14.2% compared to standard diesel fuel at full load.
{"title":"Determination of effects of some alcohol blends on performance, emission, mechanical vibration and noise in diesel engines","authors":"Nurullah Gültekin, Halil Erdi Gülcan, M. Ciniviz","doi":"10.26701/ems.1337150","DOIUrl":"https://doi.org/10.26701/ems.1337150","url":null,"abstract":"The use of alcohol-derived fuels produced from renewable resources is an effective method to reduce dependence on petroleum. However, alcohols can improve the combustion process by changing the fuel chemistry. In this way, performance, emission, mechanical vibration and noise values can be improved in diesel engines. In this study; New fuel forms (D90E10, D90IB10, D80E10IB10, D77.5E10IB10DEE2.5, 75E10IB10DEE5) were formed by mixing ethanol, isobutanol and diethyl ether alcohols with diesel fuel in certain proportions. The fuels generated was used in experiments. The studies were conducted with four different loads (%25, 50, 75, and 100) at a constant speed (2800 rpm). The optimum fuel mixture was determined by examining the engine performance, exhaust emissions, mechanical vibrations and noise data obtained in the experiments. When the most important data output of the test results is evaluated; In tests with D75E10IB10DEE5 fuel, it was determined that smoke emissions were reduced by 24.6% and mechanical vibrations by 14.2% compared to standard diesel fuel at full load.","PeriodicalId":373904,"journal":{"name":"European Mechanical Science","volume":"55 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}