A demand-aware predictive dynamic bandwidth allocation mechanism for wireless network-on-chip

N. Mansoor, Md Shahriar Shamim, A. Ganguly
{"title":"A demand-aware predictive dynamic bandwidth allocation mechanism for wireless network-on-chip","authors":"N. Mansoor, Md Shahriar Shamim, A. Ganguly","doi":"10.1145/2947357.2947361","DOIUrl":null,"url":null,"abstract":"Long distance data communication over multi-hop wireline paths in conventional Networks-on-Chips (NoCs) cause high energy consumption and degradation in bandwidth. Wireless interconnects in the millimeter-wave band have emerged as an energy-efficient interconnection paradigm for multi-core chips interconnected with NoCs. However, spatial variations in traffic distribution and temporal variations in workloads can exert variable bandwidth demands on the NoC fabric. Wireless interconnects which do not require a physical layout of interconnects can be utilized to mitigate this issue. In order to dynamically allocate variable bandwidth to the wireless transceivers depending on the demand, the design of a dynamic and efficient Medium Access Control (MAC) mechanism to grant access to the on-chip wireless communication channel is needed. In this paper, a history based predictor, which can predict the bandwidth demand of the wireless nodes in the wireless NoC is designed. Based on these predicted demands we propose the design of two MAC mechanisms that are able to dynamically allocate bandwidth to the wireless transceivers. Through system level simulations, we show that the demand-aware MAC mechanisms are more energy efficient as well as capable of sustaining higher data bandwidth in wireless NoCs.","PeriodicalId":331624,"journal":{"name":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2947357.2947361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Long distance data communication over multi-hop wireline paths in conventional Networks-on-Chips (NoCs) cause high energy consumption and degradation in bandwidth. Wireless interconnects in the millimeter-wave band have emerged as an energy-efficient interconnection paradigm for multi-core chips interconnected with NoCs. However, spatial variations in traffic distribution and temporal variations in workloads can exert variable bandwidth demands on the NoC fabric. Wireless interconnects which do not require a physical layout of interconnects can be utilized to mitigate this issue. In order to dynamically allocate variable bandwidth to the wireless transceivers depending on the demand, the design of a dynamic and efficient Medium Access Control (MAC) mechanism to grant access to the on-chip wireless communication channel is needed. In this paper, a history based predictor, which can predict the bandwidth demand of the wireless nodes in the wireless NoC is designed. Based on these predicted demands we propose the design of two MAC mechanisms that are able to dynamically allocate bandwidth to the wireless transceivers. Through system level simulations, we show that the demand-aware MAC mechanisms are more energy efficient as well as capable of sustaining higher data bandwidth in wireless NoCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向无线片上网络的需求感知预测动态带宽分配机制
在传统的片上网络(noc)中,通过多跳有线路径进行长距离数据通信会造成高能耗和带宽下降。毫米波频段的无线互连已经成为与noc互连的多核芯片的节能互连范例。然而,流量分布的空间变化和工作负载的时间变化会对NoC结构产生不同的带宽需求。无线互连不需要互连的物理布局,可以用来缓解这个问题。为了根据需求动态分配可变带宽给无线收发器,需要设计一种动态高效的介质访问控制(MAC)机制来授予对片上无线通信信道的访问权限。本文设计了一种基于历史的预测器,用于预测无线NoC中无线节点的带宽需求。基于这些预测需求,我们提出了两种MAC机制的设计,能够动态地分配带宽给无线收发器。通过系统级仿真,我们表明需求感知MAC机制更节能,并且能够在无线noc中维持更高的数据带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting 3DIC Benefit with Multiple Tiers Topologically-geometric routing A demand-aware predictive dynamic bandwidth allocation mechanism for wireless network-on-chip Buffered interconnects in 3D IC layout design Connectivity effects on energy and area for neuromorphic system with high speed asynchronous pulse mode links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1