Nonlinear estimation of torque in switched reluctance motors using grid locking and preferential training techniques on self-organizing neural networks
{"title":"Nonlinear estimation of torque in switched reluctance motors using grid locking and preferential training techniques on self-organizing neural networks","authors":"J.J. Garside, R. Brown, T.L. Ruchti, X. Feng","doi":"10.1109/IJCNN.1992.226887","DOIUrl":null,"url":null,"abstract":"The torque of a switched reluctance motor (SRM) can be estimated using a topology-preserving self-organizing neural network map. Since self-organizing maps tend to contract at region boundaries, a procedure for locking neuron weights at specific locations in a region is presented. A strategy for preferentially training neuron weights on the region boundaries is introduced. As an example of these training techniques, a one-dimensional neural network will approximate a nonlinear function. In general an n-dimension mapping can be used to approximate an m-dimensional system for n<or=m. As a practical implementation of this technique, the modeling of the theoretical torque of a SRM as a function of position and current is presented. A two-dimensional neural network estimates a three-dimensional highly nonlinear surface.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.226887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The torque of a switched reluctance motor (SRM) can be estimated using a topology-preserving self-organizing neural network map. Since self-organizing maps tend to contract at region boundaries, a procedure for locking neuron weights at specific locations in a region is presented. A strategy for preferentially training neuron weights on the region boundaries is introduced. As an example of these training techniques, a one-dimensional neural network will approximate a nonlinear function. In general an n-dimension mapping can be used to approximate an m-dimensional system for n>