{"title":"One-shot calibration of rf circuits based on non-intrusive sensors","authors":"M. Andraud, H. Stratigopoulos, E. Simeu","doi":"10.1145/2593069.2593174","DOIUrl":null,"url":null,"abstract":"We propose a post-fabrication calibration technique for RF circuits that is performed during production testing with minimum extra cost. Calibration is enabled by equipping the circuit with tuning knobs and sensors. Optimal tuning knob identification is achieved in one-shot based on a single test step that involves measuring the sensor outputs once. For this purpose, we rely on variation-aware sensors which provide measurements that remain invariant under tuning knob changes. As an auxiliary benefit, the variation-aware sensors are non-intrusive and totally transparent to the circuit. The technique is demonstrated on a 65nm RF power amplifier.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We propose a post-fabrication calibration technique for RF circuits that is performed during production testing with minimum extra cost. Calibration is enabled by equipping the circuit with tuning knobs and sensors. Optimal tuning knob identification is achieved in one-shot based on a single test step that involves measuring the sensor outputs once. For this purpose, we rely on variation-aware sensors which provide measurements that remain invariant under tuning knob changes. As an auxiliary benefit, the variation-aware sensors are non-intrusive and totally transparent to the circuit. The technique is demonstrated on a 65nm RF power amplifier.