Subtype specific breast cancer event prediction

Herman M. J. Sontrop, W. Verhaegh, R. Ham, M. Reinders, P. Moerland
{"title":"Subtype specific breast cancer event prediction","authors":"Herman M. J. Sontrop, W. Verhaegh, R. Ham, M. Reinders, P. Moerland","doi":"10.1109/GENSIPS.2010.5719684","DOIUrl":null,"url":null,"abstract":"We investigate the potential to enhance breast cancer event predictors by exploiting subtype information. We do this with a two-stage approach that first determines a sample's subtype using a recent module-driven approach, and secondly constructs a subtype-specific predictor to predict a metastasis event within five years. Our methodology is validated on a large compendium of microarray breast cancer datasets, including 43 replicate array pairs for assessing subtyping stability. Note that stratifying by subtype strongly reduces the training set sizes available to construct the individual predictors, which may decrease performance. Besides sample size, other factors like unequal class distributions and differences in the number of samples per subtype, easily obscure a fair comparison between subtype-specific predictors constructed on different subtypes, but also between subtype specific and subtype a-specific predictors. Therefore, we constructed a completely balanced experimental design, in which none of the above factors play a role and show that subtype-specific event predictors clearly outperform predictors that do not take subtype information into account.","PeriodicalId":388703,"journal":{"name":"2010 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2010.5719684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the potential to enhance breast cancer event predictors by exploiting subtype information. We do this with a two-stage approach that first determines a sample's subtype using a recent module-driven approach, and secondly constructs a subtype-specific predictor to predict a metastasis event within five years. Our methodology is validated on a large compendium of microarray breast cancer datasets, including 43 replicate array pairs for assessing subtyping stability. Note that stratifying by subtype strongly reduces the training set sizes available to construct the individual predictors, which may decrease performance. Besides sample size, other factors like unequal class distributions and differences in the number of samples per subtype, easily obscure a fair comparison between subtype-specific predictors constructed on different subtypes, but also between subtype specific and subtype a-specific predictors. Therefore, we constructed a completely balanced experimental design, in which none of the above factors play a role and show that subtype-specific event predictors clearly outperform predictors that do not take subtype information into account.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚型特异性乳腺癌事件预测
我们通过利用亚型信息来研究增强乳腺癌事件预测因子的潜力。我们采用两阶段方法,首先使用最近的模块驱动方法确定样本的亚型,然后构建亚型特异性预测器来预测五年内的转移事件。我们的方法在一个大型的微阵列乳腺癌数据集上得到了验证,包括43个用于评估亚型稳定性的重复阵列对。注意,按亚型进行分层大大减少了用于构建单个预测器的训练集大小,这可能会降低性能。除了样本量之外,其他因素,如不平等的类别分布和每个亚型样本数量的差异,很容易模糊基于不同亚型构建的亚型特异性预测因子之间的公平比较,以及亚型特异性和亚型特异性预测因子之间的公平比较。因此,我们构建了一个完全平衡的实验设计,其中上述因素均不发挥作用,并表明亚型特异性事件预测因子明显优于不考虑亚型信息的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network propagation models for gene selection Subtype specific breast cancer event prediction Importance sampling method for efficient estimation of the probability of rare events in biochemical reaction systems Bayesian MMSE estimation of classification error and performance on real genomic data Pathway and network analysis probing epigenetic influences on chemosensitivity in ovarian cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1