Automata Classification with Convolutional Neural Networks for Use in Assistive Technologies for the Visually Impaired

L. M. Bine, Yandre M. G. Costa, L. B. Aylon
{"title":"Automata Classification with Convolutional Neural Networks for Use in Assistive Technologies for the Visually Impaired","authors":"L. M. Bine, Yandre M. G. Costa, L. B. Aylon","doi":"10.1145/3197768.3201529","DOIUrl":null,"url":null,"abstract":"Our goal is to evaluate the use of Convolutional Neural Networks (CNN) in the recognition of automata images and to create a model that can be used in the construction of assistive tools. Visually impaired individuals that are studying Computer Science have difficulty in accessing and learning diagrams. Despite the solutions available in the literature to make diagrams accessible to blind students and allow the creation and manipulation of such material, we seek to give access to images of didactic materials and books. The method used consists of two steps: classification of the data using three types of CNN and the combination of the results to make a final decision. Two approaches were chosen to be tested: recognition of the type of automaton and recognition of the number of states of the automaton. Our best result was using late fusion of the three CNNs by the product rule, which resulted in an accuracy of 97% for the automaton type recognition and 91% for the recognition of the number of states of the automaton.","PeriodicalId":130190,"journal":{"name":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197768.3201529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Our goal is to evaluate the use of Convolutional Neural Networks (CNN) in the recognition of automata images and to create a model that can be used in the construction of assistive tools. Visually impaired individuals that are studying Computer Science have difficulty in accessing and learning diagrams. Despite the solutions available in the literature to make diagrams accessible to blind students and allow the creation and manipulation of such material, we seek to give access to images of didactic materials and books. The method used consists of two steps: classification of the data using three types of CNN and the combination of the results to make a final decision. Two approaches were chosen to be tested: recognition of the type of automaton and recognition of the number of states of the automaton. Our best result was using late fusion of the three CNNs by the product rule, which resulted in an accuracy of 97% for the automaton type recognition and 91% for the recognition of the number of states of the automaton.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的自动机分类在视障辅助技术中的应用
我们的目标是评估卷积神经网络(CNN)在自动机图像识别中的使用,并创建一个可用于构建辅助工具的模型。学习计算机科学的视障人士在获取和学习图表方面有困难。尽管在文献中提供的解决方案可以使盲人学生能够访问图表,并允许创建和操作这些材料,但我们寻求提供教学材料和书籍的图像。所使用的方法包括两个步骤:使用三种类型的CNN对数据进行分类,并结合结果进行最终决策。选择两种方法进行测试:自动机类型的识别和自动机状态数的识别。我们最好的结果是使用乘积规则对三个cnn进行后期融合,结果自动机类型识别的准确率为97%,自动机状态数识别的准确率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Based Fall Detection using Features of Motion, Shape and Histogram Evaluating the training transfer of Head-Mounted Display based training for assembly tasks A Taxonomy in Robot-Assisted Training: Current Trends, Needs and Challenges Bicycles and Wheelchairs for Locomotion Control of a Simulated Telerobot Supported by Gaze- and Head-Interaction Experiences with an Assistive System for Manual Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1