Metal artifacts reduction for tomosynthesis

Zhaoxia Zhang, Ming Yan, Kun Tao, Xiao Xuan
{"title":"Metal artifacts reduction for tomosynthesis","authors":"Zhaoxia Zhang, Ming Yan, Kun Tao, Xiao Xuan","doi":"10.1109/ISBI.2014.6867921","DOIUrl":null,"url":null,"abstract":"In tomosynthesis imaging, two kinds of metal artifacts will influence diagnosis: undershooting and ripple. In this paper we propose a novel metal artifact reduction (MAR) algorithm to reduce the both of these effects. First, the raw projection data are analyzed and metal areas are identified through segmentation. Then the metal areas are filled with an interpolated value based on the neighborhood background (non-segmented) pixels. The filled regions and metal regions are then reconstructed separately with Filtered Backprojection(FBP). Lastly, the two reconstruction results are combined together to get the final artifacts-free images. Phantom and clinical images are evaluated using qualitative and quantitative methods which demonstrate the algorithms effectiveness.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In tomosynthesis imaging, two kinds of metal artifacts will influence diagnosis: undershooting and ripple. In this paper we propose a novel metal artifact reduction (MAR) algorithm to reduce the both of these effects. First, the raw projection data are analyzed and metal areas are identified through segmentation. Then the metal areas are filled with an interpolated value based on the neighborhood background (non-segmented) pixels. The filled regions and metal regions are then reconstructed separately with Filtered Backprojection(FBP). Lastly, the two reconstruction results are combined together to get the final artifacts-free images. Phantom and clinical images are evaluated using qualitative and quantitative methods which demonstrate the algorithms effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于断层合成的金属伪影还原
在断层合成成像中,两种金属伪影会影响诊断:欠冲和波纹。在本文中,我们提出了一种新的金属伪影减少(MAR)算法来减少这两种影响。首先对原始投影数据进行分析,通过分割识别金属区域;然后用基于邻域背景(未分割)像素的插值值填充金属区域。然后用滤波反投影(FBP)分别重建填充区域和金属区域。最后,将两种重建结果结合在一起,得到最终的无伪影图像。使用定性和定量方法对幻影和临床图像进行评估,证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1