CNN-based Hand Gesture Recognition for Contactless Elevator Button Control

Tae-Ho Lee, Vidura Munasinghe, Yan-Mei Li, Tae Sung Kim, Hyuk-Jae Lee
{"title":"CNN-based Hand Gesture Recognition for Contactless Elevator Button Control","authors":"Tae-Ho Lee, Vidura Munasinghe, Yan-Mei Li, Tae Sung Kim, Hyuk-Jae Lee","doi":"10.1109/ICEIC57457.2023.10049968","DOIUrl":null,"url":null,"abstract":"Recently, with the outbreak of the COVID-19 pandemic, various quarantine measures have been implemented to reduce the spread of the virus. As a part of efforts, the preference for touchless technology has been emerging. In this paper, we propose a touchless elevator control system using CNN-based hand gesture recognition. Experimental results show that the hand recognition AP and FPS on the Jetson TX2 board are 81.87% and 11.8FPS, respectively. We demonstrate that an elevator model could be controlled by virtual elevator buttons utilizing CNN-based hand gesture recognition. The proposed method can be applied to commercial elevators as an approach to prevent the spread of viruses from elevator buttons.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, with the outbreak of the COVID-19 pandemic, various quarantine measures have been implemented to reduce the spread of the virus. As a part of efforts, the preference for touchless technology has been emerging. In this paper, we propose a touchless elevator control system using CNN-based hand gesture recognition. Experimental results show that the hand recognition AP and FPS on the Jetson TX2 board are 81.87% and 11.8FPS, respectively. We demonstrate that an elevator model could be controlled by virtual elevator buttons utilizing CNN-based hand gesture recognition. The proposed method can be applied to commercial elevators as an approach to prevent the spread of viruses from elevator buttons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn的非接触式电梯按钮控制手势识别
最近,随着新冠肺炎大流行的爆发,采取了各种隔离措施,以减少病毒的传播。作为努力的一部分,对非接触式技术的偏好已经出现。本文提出了一种基于cnn手势识别的非接触式电梯控制系统。实验结果表明,Jetson TX2板上的手识别AP和FPS分别为81.87%和11.8FPS。我们证明了利用基于cnn的手势识别,可以通过虚拟电梯按钮来控制电梯模型。该方法可应用于商用电梯,作为防止病毒通过电梯按钮传播的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1