Miao Meng, Ahmed Ibrahim, T. Xue, H. Yeo, Dixiong Wang, S. Roundy, S. Trolier-McKinstry, M. Kiani
{"title":"27.4 Multi-Beam Shared-Inductor Reconfigurable Voltage/SECE-Mode Piezoelectric Energy Harvesting of Multi-Axial Human Motion","authors":"Miao Meng, Ahmed Ibrahim, T. Xue, H. Yeo, Dixiong Wang, S. Roundy, S. Trolier-McKinstry, M. Kiani","doi":"10.1109/ISSCC.2019.8662414","DOIUrl":null,"url":null,"abstract":"The past few years have witnessed a growing demand for self-powered wearables that can enable vigilant health monitoring, with 24/7 operation. Energy harvesting from human-body motion is attractive for wearables; however, conventional unidirectional single-cantilever-beam piezoelectric energy harvesters (PEHs) [1]–[4] suffer from several body-motion harvesting challenges: such as multi-axial motion, irregular frequencies, and unpredictable amplitudes with frequent low-power levels [5]. To address these challenges, an eccentric rotor-based inertial PEH has been developed, which utilizes multiple magnetically plucked flexible thin-film $(60 \\mu \\mathrm {m})$ PZT-nickel-PZT beams to significantly increase the harvested energy within a small volume [5]; compared to bulk-PZT beams that are more feasible in direct-force-driven PEHs. The wrist-worn multi-beam PEH, shown in Fig. 27.4.1, converts multi-axial body motion into AC voltages with different phases and decaying amplitudes (up to several volts) within the frequency range of 90–160Hz for each beam.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The past few years have witnessed a growing demand for self-powered wearables that can enable vigilant health monitoring, with 24/7 operation. Energy harvesting from human-body motion is attractive for wearables; however, conventional unidirectional single-cantilever-beam piezoelectric energy harvesters (PEHs) [1]–[4] suffer from several body-motion harvesting challenges: such as multi-axial motion, irregular frequencies, and unpredictable amplitudes with frequent low-power levels [5]. To address these challenges, an eccentric rotor-based inertial PEH has been developed, which utilizes multiple magnetically plucked flexible thin-film $(60 \mu \mathrm {m})$ PZT-nickel-PZT beams to significantly increase the harvested energy within a small volume [5]; compared to bulk-PZT beams that are more feasible in direct-force-driven PEHs. The wrist-worn multi-beam PEH, shown in Fig. 27.4.1, converts multi-axial body motion into AC voltages with different phases and decaying amplitudes (up to several volts) within the frequency range of 90–160Hz for each beam.