One-Shot Face Reenactment with 2D Facial Landmark Conditional Normalizing Flow

Dajin Han, Tae Hyun Kim
{"title":"One-Shot Face Reenactment with 2D Facial Landmark Conditional Normalizing Flow","authors":"Dajin Han, Tae Hyun Kim","doi":"10.1109/ICEIC57457.2023.10049848","DOIUrl":null,"url":null,"abstract":"Normalizing Flow (NF) has gained growing popularity in various image generation tasks. In this work, we develop a new method that enables the NF to control face generation, which has not been studied yet. To do so, we introduce several loss functions to facilitate stable training and inference while controlling face generation given a facial landmark. In our experiments, we evaluate the performance of the proposed method and show the capability of the NF in controlling the face generation task.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normalizing Flow (NF) has gained growing popularity in various image generation tasks. In this work, we develop a new method that enables the NF to control face generation, which has not been studied yet. To do so, we introduce several loss functions to facilitate stable training and inference while controlling face generation given a facial landmark. In our experiments, we evaluate the performance of the proposed method and show the capability of the NF in controlling the face generation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维面部地标条件归一化流的一次性人脸再现
归一化流(NF)在各种图像生成任务中越来越受欢迎。在这项工作中,我们开发了一种新的方法,使NF能够控制人脸生成,这是目前尚未研究的。为此,我们引入了几个损失函数,以促进稳定的训练和推理,同时控制给定面部地标的面部生成。在我们的实验中,我们评估了该方法的性能,并展示了NF在控制人脸生成任务中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1